These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Cell Behavior of Primary Fibroblasts and Osteoblasts on Plasma-Treated Fluorinated Polymer Coated with Honeycomb Polystyrene. Fajstavrová K; Rimpelová S; Fajstavr D; Švorčík V; Slepička P Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33668477 [TBL] [Abstract][Full Text] [Related]
4. Antibacterial Properties of a Honeycomb-like Pattern with Cellulose Acetate and Silver Nanoparticles. Hurtuková K; Fajstavrová K; Rimpelová S; Vokatá B; Fajstavr D; Kasálková NS; Siegel J; Švorčík V; Slepička P Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300969 [TBL] [Abstract][Full Text] [Related]
5. Preparation of porous poly(L-lactic acid) honeycomb monolith structure by phase separation and unidirectional freezing. Kim JW; Taki K; Nagamine S; Ohshima M Langmuir; 2009 May; 25(9):5304-12. PubMed ID: 19290649 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable Poly(l-lactic acid) (PLLA) Coatings Fabricated from Nonsolvent Induced Phase Separation for Improving Corrosion Resistance of Magnesium Rods in Biological Fluids. Sheng Y; Tian L; Wu C; Qin L; Ngai T Langmuir; 2018 Sep; 34(36):10684-10693. PubMed ID: 30125116 [TBL] [Abstract][Full Text] [Related]
7. An improved surface for enhanced stem cell proliferation and osteogenic differentiation using electrospun composite PLLA/P123 scaffold. Birhanu G; Akbari Javar H; Seyedjafari E; Zandi-Karimi A; Dusti Telgerd M Artif Cells Nanomed Biotechnol; 2018 Sep; 46(6):1274-1281. PubMed ID: 28835133 [TBL] [Abstract][Full Text] [Related]
8. Bacterial adhesion on honeycomb-structured poly(L-lactic acid) surface with ag nanoparticles. Jiang X; Zhang T; He S; Ling J; Gu N; Zhang Y; Zhou X; Wang X; Cheng L J Biomed Nanotechnol; 2012 Oct; 8(5):791-9. PubMed ID: 22888750 [TBL] [Abstract][Full Text] [Related]
9. The influence of surface morphology and wettability on the inflammatory response against poly(L-lactic acid): a semi-quantitative study with monoclonal antibodies. Lam KH; Schakenraad JM; Groen H; Esselbrugge H; Dijkstra PJ; Feijen J; Nieuwenhuis P J Biomed Mater Res; 1995 Aug; 29(8):929-42. PubMed ID: 7593036 [TBL] [Abstract][Full Text] [Related]
10. Preparation of lotus-leaf-like structured blood compatible poly(ε-caprolactone)-block-poly(L-lactic acid) copolymer film surfaces. Kim SI; Lim JI; Lee BR; Mun CH; Jung Y; Kim SH Colloids Surf B Biointerfaces; 2014 Feb; 114():28-35. PubMed ID: 24161503 [TBL] [Abstract][Full Text] [Related]
12. Cell adhesion and morphology in porous scaffold based on enantiomeric poly(lactic acid) graft-type phospholipid polymers. Watanabe J; Eriguchi T; Ishihara K Biomacromolecules; 2002; 3(6):1375-83. PubMed ID: 12425679 [TBL] [Abstract][Full Text] [Related]
13. Macroporous poly(L-lactide) scaffold 1. Preparation of a macroporous scaffold by liquid--liquid phase separation of a PLLA--dioxane--water system. Hua FJ; Kim GE; Lee JD; Son YK; Lee DS J Biomed Mater Res; 2002; 63(2):161-7. PubMed ID: 11870649 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of nano-fibrous poly(L-lactic acid) scaffold reinforced by surface modified chitosan micro-fiber. Lou T; Wang X; Song G Int J Biol Macromol; 2013 Oct; 61():353-8. PubMed ID: 23928011 [TBL] [Abstract][Full Text] [Related]
15. Surface Hydrophilicity of Poly(l-Lactide) Acid Polymer Film Changes the Human Adult Adipose Stem Cell Architecture. Argentati C; Morena F; Montanucci P; Rallini M; Basta G; Calabrese N; Calafiore R; Cordellini M; Emiliani C; Armentano I; Martino S Polymers (Basel); 2018 Feb; 10(2):. PubMed ID: 30966176 [TBL] [Abstract][Full Text] [Related]
16. Controlled preparation and properties of porous poly(L-lactide) obtained from a co-continuous blend of two biodegradable polymers. Sarazin P; Roy X; Favis BD Biomaterials; 2004 Dec; 25(28):5965-78. PubMed ID: 15183611 [TBL] [Abstract][Full Text] [Related]
17. Nano-composite of poly(L-lactide) and halloysite nanotubes surface-grafted with L-lactide oligomer under microwave irradiation. Luo BH; Hsu CE; Li JH; Zhao LF; Liu MX; Wang XY; Zhou CR J Biomed Nanotechnol; 2013 Apr; 9(4):649-58. PubMed ID: 23621025 [TBL] [Abstract][Full Text] [Related]
18. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Liu X; Won Y; Ma PX Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063 [TBL] [Abstract][Full Text] [Related]
19. Effect of RGD-immobilized dual-pore poly(L-lactic acid) scaffolds on chondrocyte proliferation and extracellular matrix production. Jung HJ; Park K; Kim JJ; Lee JH; Han KO; Han DK Artif Organs; 2008 Dec; 32(12):981-9. PubMed ID: 19133029 [TBL] [Abstract][Full Text] [Related]
20. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. Xie L; Yu H; Yang W; Zhu Z; Yue L J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]