These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 33105858)

  • 1. An Advanced TiAl Alloy for High-Performance Racing Applications.
    Burtscher M; Klein T; Lindemann J; Lehmann O; Fellmann H; Güther V; Clemens H; Mayer S
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33105858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microstructural Evolution and Mechanical Properties of an Advanced γ-TiAl Based Alloy Processed by Spark Plasma Sintering.
    Wimler D; Lindemann J; Clemens H; Mayer S
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31075938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Multi-Directional Forging on the Microstructure and Mechanical Properties of β-Solidifying TiAl Alloy.
    Cui N; Wu Q; Bi K; Wang J; Xu T; Kong F
    Materials (Basel); 2019 Apr; 12(9):. PubMed ID: 31035383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sliding Wear Behavior of Intermetallic Ti-45Al-2Nb-2Mn-(at%)-0.8vol%TiB
    Shagñay S; Cornide J; Ruiz-Navas EM
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristic effects of alloying elements on β solidifying titanium aluminides: A review.
    Raji SA; Popoola API; Pityana SL; Popoola OM
    Heliyon; 2020 Jul; 6(7):e04463. PubMed ID: 32728641
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical alloying and high pressure processing of a TiAl-V intermetallic alloy.
    Dymek S; Wróbel M; Witczak Z; Blicharski M
    J Microsc; 2010 Mar; 237(3):481-6. PubMed ID: 20500422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integration of Hot Isostatic Pressing and Heat Treatment for Advanced Modified γ-TiAl TNM Alloys.
    Bernal D; Chamorro X; Hurtado I; Lopez-Galilea I; Bürger D; Weber S; Madariaga I
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hot Deformation Behavior and Microstructural Evolution of a Novel β-Solidifying Ti-43Al-3Mn-2Nb-0.1Y Alloy.
    Wu Q; Cui N; Xiao X; Wang X; Zhao E
    Materials (Basel); 2019 Jul; 12(13):. PubMed ID: 31284560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow Stress Prediction and Hot Deformation Mechanisms in Ti-44Al-5Nb-(Mo, V, B) Alloy.
    Li T; Liu G; Xu M; Wang B; Fu T; Wang Z; Misra RDK
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30347775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomography.
    Klein T; Clemens H; Mayer S
    Materials (Basel); 2016 Sep; 9(9):. PubMed ID: 28773880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Microstructural Evolution, Tensile Properties, and Phase Hardness of a TiAl Alloy with a High Content of the β Phase.
    Cui N; Wu Q; Yan Z; Zhou H; Wang X
    Materials (Basel); 2019 Aug; 12(17):. PubMed ID: 31466224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative Study of Microstructure and Mechanical Properties of Two TiAl-Based Alloys Reinforced with Carbide Particles.
    Lapin J; Kamyshnykova K; Klimova A
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32731535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Effects of Hot-Pack Coating Materials on the Pack Rolling Process and Microstructural Characteristics during Ti-46Al-8Nb Sheet Fabrication.
    Huang H; Liao M; Yu Q; Liu G; Wang Z
    Materials (Basel); 2020 Feb; 13(3):. PubMed ID: 32046076
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of Heat Treatment on Microstructures and Mechanical Properties of a Novel β-Solidifying TiAl Alloy.
    Cui N; Wu Q; Bi K; Xu T; Kong F
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31126013
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal Expansion of a Multiphase Intermetallic Ti-Al-Nb-Mo Alloy Studied by High-Energy X-ray Diffraction.
    Staron P; Stark A; Schell N; Spoerk-Erdely P; Clemens H
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microstructural Characterization by Automated Crystal Orientation and Phase Mapping by Precession Electron Diffraction in TEM: Application to Hot Deformation of a
    Singh V; Mondal C; Bhattacharjee PP; Ghosal P
    Microsc Microanal; 2019 Dec; 25(6):1457-1465. PubMed ID: 30973126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine.
    Dzogbewu TC; du Preez WB
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of an Additive Manufactured TiAl Alloy-Steel Joint Produced by Electron Beam Welding.
    Basile G; Baudana G; Marchese G; Lorusso M; Lombardi M; Ugues D; Fino P; Biamino S
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29342074
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigating Inhomogeneity and Tailoring the Microstructure of Selective Laser Melted Titanium Orthorhombic Alloy by Heat Treatment, Hot Isostatic Pressing, and Multiple Laser Exposures.
    Polozov I; Starikov K; Popovich A; Sufiiarov V
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34501035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of microstructure on the mechanical properties of as-cast Ti-Nb-Al-Cu-Ni alloys for biomedical application.
    Okulov IV; Pauly S; Kühn U; Gargarella P; Marr T; Freudenberger J; Schultz L; Scharnweber J; Oertel CG; Skrotzki W; Eckert J
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4795-801. PubMed ID: 24094189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.