BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 33105986)

  • 1. 3D Biomimetic Tongue-Emulating Surfaces for Tribological Applications.
    Andablo-Reyes E; Bryant M; Neville A; Hyde P; Sarkar R; Francis M; Sarkar A
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49371-49385. PubMed ID: 33105986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insights into the Multiscale Lubrication Mechanism of Edible Phase Change Materials.
    Soltanahmadi S; Bryant M; Sarkar A
    ACS Appl Mater Interfaces; 2023 Jan; 15(3):3699-3712. PubMed ID: 36633252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic Lubrication and Surface Interactions of Dopamine-Assisted Zwitterionic Polyelectrolyte Coatings.
    Han L; Xiang L; Zhang J; Chen J; Liu J; Yan B; Zeng H
    Langmuir; 2018 Sep; 34(38):11593-11601. PubMed ID: 30156852
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In situ oral lubrication and smoothness sensory perception influenced by tongue surface roughness.
    Wang X; Chen J; Wang X
    J Sci Food Agric; 2022 Jan; 102(1):132-138. PubMed ID: 34057739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of the lubrication behavior of whey protein model foods using tribology in linear and elliptical movement.
    Campbell CL; Foegeding EA; van de Velde F
    J Texture Stud; 2017 Aug; 48(4):335-341. PubMed ID: 28556911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembled structures of hydroxyapatite in the biomimetic coating on a bioinert ceramic substrate.
    Chakraborty J; Sarkar SD; Chatterjee S; Sinha MK; Basu D
    Colloids Surf B Biointerfaces; 2008 Oct; 66(2):295-8. PubMed ID: 18693089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lubrication by biomacromolecules: mechanisms and biomimetic strategies.
    Pradal C; Yakubov GE; Williams MAK; McGuckin MA; Stokes JR
    Bioinspir Biomim; 2019 Jul; 14(5):051001. PubMed ID: 31212257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and functional evaluation of biomimetic silicone surfaces with hierarchical micro/nano-topographical features demonstrates favourable in vitro foreign body response of breast-derived fibroblasts.
    Kyle DJ; Oikonomou A; Hill E; Bayat A
    Biomaterials; 2015 Jun; 52():88-102. PubMed ID: 25818416
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of 3D freeform porous tubular constructs with mechanical flexibility mimicking that of soft vascular tissue.
    Lee JE; Park SJ; Yoon Y; Son Y; Park SH
    J Mech Behav Biomed Mater; 2019 Mar; 91():193-201. PubMed ID: 30594061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lotus-on-chip: computer-aided design and 3D direct laser writing of bioinspired surfaces for controlling the wettability of materials and devices.
    Lantada AD; Hengsbach S; Bade K
    Bioinspir Biomim; 2017 Oct; 12(6):066004. PubMed ID: 28752821
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment.
    Liu G; Liu Z; Li N; Wang X; Zhou F; Liu W
    ACS Appl Mater Interfaces; 2014 Nov; 6(22):20452-63. PubMed ID: 25347384
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D-Printed Bioinspired Cassie-Baxter Wettability for Controllable Microdroplet Manipulation.
    Yin Q; Guo Q; Wang Z; Chen Y; Duan H; Cheng P
    ACS Appl Mater Interfaces; 2021 Jan; 13(1):1979-1987. PubMed ID: 33351582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication and friction characteristics of arbitrary biosurfaces.
    Maddox SR; Han X; Meng X; Zou M
    Biointerphases; 2020 Dec; 15(6):061016. PubMed ID: 33356336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Roles of viscosity, applied load and surface wettability on the lubrication behaviour of model liquid/semi-solid foods: Measurements with a bespoke tribo-cell fixture and rotational rheometer.
    Gamonpilas C; Benyajati CN; Sritham W; Soparat J; Limprayoon N; Seetapan N; Fuongfuchat A
    Curr Res Food Sci; 2022; 5():57-64. PubMed ID: 35005632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomimetic design of elastomer surface pattern for friction control under wet conditions.
    Huang W; Wang X
    Bioinspir Biomim; 2013 Dec; 8(4):046001. PubMed ID: 23999795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioinspired, peg-studded hexagonal patterns for wetting and friction.
    Li M; Huang W; Wang X
    Biointerphases; 2015 Sep; 10(3):031008. PubMed ID: 26340927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tribology and its growing use toward the study of food oral processing and sensory perception.
    Shewan HM; Pradal C; Stokes JR
    J Texture Stud; 2020 Feb; 51(1):7-22. PubMed ID: 31149733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lubrication properties of protein aggregate dispersions in a soft contact.
    Chojnicka A; de Jong S; de Kruif CG; Visschers RW
    J Agric Food Chem; 2008 Feb; 56(4):1274-82. PubMed ID: 18237125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature.
    Sun Y; Guo Z
    Nanoscale Horiz; 2019 Jan; 4(1):52-76. PubMed ID: 32254145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nature inspired structured surfaces for biomedical applications.
    Webb HK; Hasan J; Truong VK; Crawford RJ; Ivanova EP
    Curr Med Chem; 2011; 18(22):3367-75. PubMed ID: 21728964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.