These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 33106348)

  • 1. Structure-Function Characterization of the Conserved Regulatory Mechanism of the Escherichia coli M48 Metalloprotease BepA.
    Bryant JA; Cadby IT; Chong ZS; Boelter G; Sevastsyanovich YR; Morris FC; Cunningham AF; Kritikos G; Meek RW; Banzhaf M; Chng SS; Lovering AL; Henderson IR
    J Bacteriol; 2020 Dec; 203(2):. PubMed ID: 33106348
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease homolog BepA (YfgC) promotes assembly and degradation of β-barrel membrane proteins in Escherichia coli.
    Narita S; Masui C; Suzuki T; Dohmae N; Akiyama Y
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):E3612-21. PubMed ID: 24003122
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Edge-strand of BepA interacts with immature LptD on the β-barrel assembly machine to direct it to on- and off-pathways.
    Miyazaki R; Watanabe T; Yoshitani K; Akiyama Y
    Elife; 2021 Aug; 10():. PubMed ID: 34463613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The TPR domain of BepA is required for productive interaction with substrate proteins and the β-barrel assembly machinery complex.
    Daimon Y; Iwama-Masui C; Tanaka Y; Shiota T; Suzuki T; Miyazaki R; Sakurada H; Lithgow T; Dohmae N; Mori H; Tsukazaki T; Narita SI; Akiyama Y
    Mol Microbiol; 2017 Dec; 106(5):760-776. PubMed ID: 28960545
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversible autoinhibitory regulation of
    Daimon Y; Narita SI; Miyazaki R; Hizukuri Y; Mori H; Tanaka Y; Tsukazaki T; Akiyama Y
    Proc Natl Acad Sci U S A; 2020 Nov; 117(45):27989-27996. PubMed ID: 33093205
    [No Abstract]   [Full Text] [Related]  

  • 6. Structural Basis for the Function of the β-Barrel Assembly-Enhancing Protease BepA.
    Shahrizal M; Daimon Y; Tanaka Y; Hayashi Y; Nakayama S; Iwaki S; Narita SI; Kamikubo H; Akiyama Y; Tsukazaki T
    J Mol Biol; 2019 Feb; 431(3):625-635. PubMed ID: 30521812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly.
    Soltes GR; Martin NR; Park E; Sutterlin HA; Silhavy TJ
    J Bacteriol; 2017 Oct; 199(20):. PubMed ID: 28784813
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mutation and Suppressor Analysis of the Essential Lipopolysaccharide Transport Protein LptA Reveals Strategies To Overcome Severe Outer Membrane Permeability Defects in Escherichia coli.
    Falchi FA; Maccagni EA; Puccio S; Peano C; De Castro C; Palmigiano A; Garozzo D; Martorana AM; Polissi A; Dehò G; Sperandeo P
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29109183
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Escherichia coli β-Barrel Assembly Machinery Is Sensitized to Perturbations under High Membrane Fluidity.
    Storek KM; Vij R; Sun D; Smith PA; Koerber JT; Rutherford ST
    J Bacteriol; 2019 Jan; 201(1):. PubMed ID: 30322857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An in vivo protease activity assay for investigating the functions of the Escherichia coli membrane protease HtpX.
    Yoshitani K; Hizukuri Y; Akiyama Y
    FEBS Lett; 2019 Apr; 593(8):842-851. PubMed ID: 30903618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport in
    Vetterli SU; Zerbe K; Müller M; Urfer M; Mondal M; Wang SY; Moehle K; Zerbe O; Vitale A; Pessi G; Eberl L; Wollscheid B; Robinson JA
    Sci Adv; 2018 Nov; 4(11):eaau2634. PubMed ID: 30443594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crystal structure of Escherichia coli BamB, a lipoprotein component of the β-barrel assembly machinery complex.
    Kim KH; Paetzel M
    J Mol Biol; 2011 Mar; 406(5):667-78. PubMed ID: 21168416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The complex that inserts lipopolysaccharide into the bacterial outer membrane forms a two-protein plug-and-barrel.
    Freinkman E; Chng SS; Kahne D
    Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2486-91. PubMed ID: 21257904
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BamA β16C strand and periplasmic turns are critical for outer membrane protein insertion and assembly.
    Gu Y; Zeng Y; Wang Z; Dong C
    Biochem J; 2017 Nov; 474(23):3951-3961. PubMed ID: 28974626
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Augmenting β-augmentation: structural basis of how BamB binds BamA and may support folding of outer membrane proteins.
    Heuck A; Schleiffer A; Clausen T
    J Mol Biol; 2011 Mar; 406(5):659-66. PubMed ID: 21236263
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional analysis of the β-barrel domain of BamA from Escherichia coli.
    Ni D; Wang Y; Yang X; Zhou H; Hou X; Cao B; Lu Z; Zhao X; Yang K; Huang Y
    FASEB J; 2014 Jun; 28(6):2677-85. PubMed ID: 24619089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of Escherichia coli BamD and its functional implications in outer membrane protein assembly.
    Dong C; Hou HF; Yang X; Shen YQ; Dong YH
    Acta Crystallogr D Biol Crystallogr; 2012 Feb; 68(Pt 2):95-101. PubMed ID: 22281737
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of BamB bound to a periplasmic domain fragment of BamA, the central component of the β-barrel assembly machine.
    Jansen KB; Baker SL; Sousa MC
    J Biol Chem; 2015 Jan; 290(4):2126-36. PubMed ID: 25468906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-resolution structure of a new crystal form of BamA POTRA4-5 from Escherichia coli.
    Zhang H; Gao ZQ; Hou HF; Xu JH; Li LF; Su XD; Dong YH
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2011 Jul; 67(Pt 7):734-8. PubMed ID: 21795783
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structure of LptH, the periplasmic component of the lipopolysaccharide transport machinery from Pseudomonas aeruginosa.
    Bollati M; Villa R; Gourlay LJ; Benedet M; Dehò G; Polissi A; Barbiroli A; Martorana AM; Sperandeo P; Bolognesi M; Nardini M
    FEBS J; 2015 May; 282(10):1980-97. PubMed ID: 25735820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.