BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 33106374)

  • 1. Transcriptomic Analysis of Diffuse Intrinsic Pontine Glioma (DIPG) Identifies a Targetable ALDH-Positive Subset of Highly Tumorigenic Cancer Stem-like Cells.
    Surowiec RK; Ferris SF; Apfelbaum A; Espinoza C; Mehta RK; Monchamp K; Sirihorachai VR; Bedi K; Ljungman M; Galban S
    Mol Cancer Res; 2021 Feb; 19(2):223-239. PubMed ID: 33106374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of mutant PPM1D enhances DNA damage response and growth suppressive effects of ionizing radiation in diffuse intrinsic pontine glioma.
    Akamandisa MP; Nie K; Nahta R; Hambardzumyan D; Castellino RC
    Neuro Oncol; 2019 Jun; 21(6):786-799. PubMed ID: 30852603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diffuse Intrinsic Pontine Glioma Cells Are Vulnerable to Mitotic Abnormalities Associated with BMI-1 Modulation.
    Senthil Kumar S; Sengupta S; Zhu X; Mishra DK; Phoenix T; Dyer L; Fuller C; Stevenson CB; DeWire M; Fouladi M; Drissi R
    Mol Cancer Res; 2020 Nov; 18(11):1711-1723. PubMed ID: 32801164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TP53 wild-type/PPM1D mutant diffuse intrinsic pontine gliomas are sensitive to a MDM2 antagonist.
    Xu C; Liu H; Pirozzi CJ; Chen LH; Greer PK; Diplas BH; Zhang L; Waitkus MS; He Y; Yan H
    Acta Neuropathol Commun; 2021 Nov; 9(1):178. PubMed ID: 34732238
    [TBL] [Abstract][Full Text] [Related]  

  • 5. H3.3 K27M depletion increases differentiation and extends latency of diffuse intrinsic pontine glioma growth in vivo.
    Silveira AB; Kasper LH; Fan Y; Jin H; Wu G; Shaw TI; Zhu X; Larson JD; Easton J; Shao Y; Yergeau DA; Rosencrance C; Boggs K; Rusch MC; Ding L; Zhang J; Finkelstein D; Noyes RM; Russell BL; Xu B; Broniscer A; Wetmore C; Pounds SB; Ellison DW; Zhang J; Baker SJ
    Acta Neuropathol; 2019 Apr; 137(4):637-655. PubMed ID: 30770999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of Head and Neck Squamous Cancer Stem Cells by PI3K and SOX2.
    Keysar SB; Le PN; Miller B; Jackson BC; Eagles JR; Nieto C; Kim J; Tang B; Glogowska MJ; Morton JJ; Padilla-Just N; Gomez K; Warnock E; Reisinger J; Arcaroli JJ; Messersmith WA; Wakefield LM; Gao D; Tan AC; Serracino H; Vasiliou V; Roop DR; Wang XJ; Jimeno A
    J Natl Cancer Inst; 2017 Jan; 109(1):. PubMed ID: 27634934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival.
    Silva IA; Bai S; McLean K; Yang K; Griffith K; Thomas D; Ginestier C; Johnston C; Kueck A; Reynolds RK; Wicha MS; Buckanovich RJ
    Cancer Res; 2011 Jun; 71(11):3991-4001. PubMed ID: 21498635
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of the immune microenvironment of diffuse intrinsic pontine glioma: implications for development of immunotherapy.
    Lieberman NAP; DeGolier K; Kovar HM; Davis A; Hoglund V; Stevens J; Winter C; Deutsch G; Furlan SN; Vitanza NA; Leary SES; Crane CA
    Neuro Oncol; 2019 Jan; 21(1):83-94. PubMed ID: 30169876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PI3K/mTOR is a therapeutically targetable genetic dependency in diffuse intrinsic pontine glioma.
    Duchatel RJ; Jackson ER; Parackal SG; Kiltschewskij D; Findlay IJ; Mannan A; Staudt DE; Thomas BC; Germon ZP; Laternser S; Kearney PS; Jamaluddin MFB; Douglas AM; Beitaki T; McEwen HP; Persson ML; Hocke EA; Jain V; Aksu M; Manning EE; Murray HC; Verrills NM; Sun CX; Daniel P; Vilain RE; Skerrett-Byrne DA; Nixon B; Hua S; de Bock CE; Colino-Sanguino Y; Valdes-Mora F; Tsoli M; Ziegler DS; Cairns MJ; Raabe EH; Vitanza NA; Hulleman E; Phoenix TN; Koschmann C; Alvaro F; Dayas CV; Tinkle CL; Wheeler H; Whittle JR; Eisenstat DD; Firestein R; Mueller S; Valvi S; Hansford JR; Ashley DM; Gregory SG; Kilburn LB; Nazarian J; Cain JE; Dun MD
    J Clin Invest; 2024 Feb; 134(6):. PubMed ID: 38319732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High NRF2 level mediates cancer stem cell-like properties of aldehyde dehydrogenase (ALDH)-high ovarian cancer cells: inhibitory role of all-trans retinoic acid in ALDH/NRF2 signaling.
    Kim D; Choi BH; Ryoo IG; Kwak MK
    Cell Death Dis; 2018 Aug; 9(9):896. PubMed ID: 30166520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dimethyl alpha-ketoglutarate inhibits proliferation in diffuse intrinsic pontine glioma by reprogramming epigenetic and transcriptional networks.
    Lee K; Yun S; Park J; Lee S; Carcaboso AM; Yi SJ; Kim K
    Biochem Biophys Res Commun; 2023 Oct; 677():6-12. PubMed ID: 37523894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations.
    Ma S; Chan KW; Lee TK; Tang KH; Wo JY; Zheng BJ; Guan XY
    Mol Cancer Res; 2008 Jul; 6(7):1146-53. PubMed ID: 18644979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Targeting Mutant PPM1D Sensitizes Diffuse Intrinsic Pontine Glioma Cells to the PARP Inhibitor Olaparib.
    Wang Z; Xu C; Diplas BH; Moure CJ; Chen CJ; Chen LH; Du C; Zhu H; Greer PK; Zhang L; He Y; Waitkus MS; Yan H
    Mol Cancer Res; 2020 Jul; 18(7):968-980. PubMed ID: 32229503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BMP-2 inhibits tumor-initiating ability in human renal cancer stem cells and induces bone formation.
    Wang L; Park P; La Marca F; Than KD; Lin CY
    J Cancer Res Clin Oncol; 2015 Jun; 141(6):1013-24. PubMed ID: 25431339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ALDH activity selectively defines an enhanced tumor-initiating cell population relative to CD133 expression in human pancreatic adenocarcinoma.
    Kim MP; Fleming JB; Wang H; Abbruzzese JL; Choi W; Kopetz S; McConkey DJ; Evans DB; Gallick GE
    PLoS One; 2011; 6(6):e20636. PubMed ID: 21695188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting ALDH(bright) human carcinoma-initiating cells with ALDH1A1-specific CD8⁺ T cells.
    Visus C; Wang Y; Lozano-Leon A; Ferris RL; Silver S; Szczepanski MJ; Brand RE; Ferrone CR; Whiteside TL; Ferrone S; DeLeo AB; Wang X
    Clin Cancer Res; 2011 Oct; 17(19):6174-84. PubMed ID: 21856769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of Novel RAS Signaling Therapeutic Vulnerabilities in Diffuse Intrinsic Pontine Gliomas.
    Koncar RF; Dey BR; Stanton AJ; Agrawal N; Wassell ML; McCarl LH; Locke AL; Sanders L; Morozova-Vaske O; Myers MI; Hamilton RL; Carcaboso AM; Kohanbash G; Hu B; Amankulor NM; Felker J; Kambhampati M; Nazarian J; Becher OJ; James CD; Hashizume R; Broniscer A; Pollack IF; Agnihotri S
    Cancer Res; 2019 Aug; 79(16):4026-4041. PubMed ID: 31201162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. OLIG2 maintenance is not essential for diffuse intrinsic pontine glioma cell line growth but regulates tumor phenotypes.
    Liao Y; Luo Z; Deng Y; Zhang F; Rao R; Wang J; Xu L; Kumar SS; Sengupta S; DeWire-Schottmiller M; Berry K; Garrett M; Fouladi M; Drissi R; Lu QR
    Neuro Oncol; 2021 Jul; 23(7):1183-1196. PubMed ID: 33539525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chorioallantoic membrane (CAM) assay to study treatment effects in diffuse intrinsic pontine glioma.
    Power EA; Fernandez-Torres J; Zhang L; Yaun R; Lucien F; Daniels DJ
    PLoS One; 2022; 17(2):e0263822. PubMed ID: 35157705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling.
    Sullivan JP; Spinola M; Dodge M; Raso MG; Behrens C; Gao B; Schuster K; Shao C; Larsen JE; Sullivan LA; Honorio S; Xie Y; Scaglioni PP; DiMaio JM; Gazdar AF; Shay JW; Wistuba II; Minna JD
    Cancer Res; 2010 Dec; 70(23):9937-48. PubMed ID: 21118965
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.