These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 33106396)
21. Non-destructive and non-invasive analyses shed light on the realization technique of ancient polychrome prints. Striová J; Coccolini G; Micheli S; Lofrumento C; Galeotti M; Cagnini A; Castellucci EM Spectrochim Acta A Mol Biomol Spectrosc; 2009 Aug; 73(3):539-45. PubMed ID: 19081288 [TBL] [Abstract][Full Text] [Related]
22. Forensic Discrimination Potential of Blue, Black, Green, and Red Colored Fountain Pen Inks Commercially Used in Pakistan, by UV/Visible Spectroscopy, Thin Layer Chromatography, and Fourier Transform Infrared Spectroscopy. Sharif M; Batool M; Chand S; Farooqi ZH; Tirmazi SAAS; Athar M Int J Anal Chem; 2019; 2019():5980967. PubMed ID: 30723504 [TBL] [Abstract][Full Text] [Related]
23. Identification of colorants in pigmented pen inks by laser desorption mass spectrometry. Papson K; Stachura S; Boralsky L; Allison J J Forensic Sci; 2008 Jan; 53(1):100-6. PubMed ID: 18279246 [TBL] [Abstract][Full Text] [Related]
24. Multidisciplinary approach for the study of an Egyptian coffin (late 22nd/early 25th dynasty): combining imaging and spectroscopic techniques. Bracci S; Caruso O; Galeotti M; Iannaccone R; Magrini D; Picchi D; Pinna D; Porcinai S Spectrochim Acta A Mol Biomol Spectrosc; 2015 Jun; 145():511-522. PubMed ID: 25797226 [TBL] [Abstract][Full Text] [Related]
25. A multidisciplinary study unveils the nature of a Roman ink of the I century AD. Sibilia M; Stani C; Gigli L; Pollastri S; Migliori A; D'Amico F; Schmid C; Licen S; Crosera M; Adami G; Barbieri P; Plaisier JR; Aquilanti G; Vaccari L; Buson S; Gonzato F Sci Rep; 2021 Mar; 11(1):7231. PubMed ID: 33790332 [TBL] [Abstract][Full Text] [Related]
28. Analysis of pigments from Roman wall paintings found in Vicenza. Mazzocchin GA; Agnoli F; Mazzocchin S; Colpo I Talanta; 2003 Nov; 61(4):565-72. PubMed ID: 18969219 [TBL] [Abstract][Full Text] [Related]
29. Sorption mechanisms of lead on silicon-rich biochar in aqueous solution: Spectroscopic investigation. Li J; Zheng L; Wang SL; Wu Z; Wu W; Niazi NK; Shaheen SM; Rinklebe J; Bolan N; Ok YS; Wang H Sci Total Environ; 2019 Jul; 672():572-582. PubMed ID: 30965268 [TBL] [Abstract][Full Text] [Related]
30. Hydrocerussite-related minerals and materials: structural principles, chemical variations and infrared spectroscopy. Siidra O; Nekrasova D; Depmeier W; Chukanov N; Zaitsev A; Turner R Acta Crystallogr B Struct Sci Cryst Eng Mater; 2018 Apr; 74(Pt 2):182-195. PubMed ID: 29616993 [TBL] [Abstract][Full Text] [Related]
31. [Comprehensive Study of Lead Speciation and Its Bioavailability in Soils From a Lead/Zinc Mining Area by Micro X-Ray Fluorescence and X-Ray Absorption Near-Edge Structure]. Sun XY; Liu J; Luo LQ Huan Jing Ke Xue; 2018 Aug; 39(8):3835-3844. PubMed ID: 29998693 [TBL] [Abstract][Full Text] [Related]
33. Colored inks analysis and differentiation: a first step in artistic contemporary prints discrimination. Vila A; Ferrer N; García JF Anal Chim Acta; 2007 Apr; 588(1):96-107. PubMed ID: 17386798 [TBL] [Abstract][Full Text] [Related]
34. Investigating counterfeiting of an artwork by XRF, SEM-EDS, FTIR and synchrotron radiation induced MA-XRF at LNLS-BRAZIL. Pereira MO; Felix VS; Oliveira AL; Ferreira DS; Pimenta AR; Carvalho CS; Silva FL; Perez CA; Galante D; Freitas RP Spectrochim Acta A Mol Biomol Spectrosc; 2021 Feb; 246():118925. PubMed ID: 32987269 [TBL] [Abstract][Full Text] [Related]
35. Linking Infrared Spectra of Laboratory Iron Gall Inks Based on Traditional Recipes with their Material Components. Kaminari AA; Boyatzis SC; Alexopoulou A Appl Spectrosc; 2018 Oct; 72(10):1511-1527. PubMed ID: 29747520 [TBL] [Abstract][Full Text] [Related]
36. Revealing metallic ink in Herculaneum papyri. Brun E; Cotte M; Wright J; Ruat M; Tack P; Vincze L; Ferrero C; Delattre D; Mocella V Proc Natl Acad Sci U S A; 2016 Apr; 113(14):3751-4. PubMed ID: 27001841 [TBL] [Abstract][Full Text] [Related]
37. DNA decay rate in papyri and human remains from Egyptian archaeological sites. Marota I; Basile C; Ubaldi M; Rollo F Am J Phys Anthropol; 2002 Apr; 117(4):310-8. PubMed ID: 11920366 [TBL] [Abstract][Full Text] [Related]
38. The discrimination potential of ultraviolet-visible spectrophotometry, thin layer chromatography, and Fourier transform infrared spectroscopy for the forensic analysis of black and blue ballpoint inks. Causin V; Casamassima R; Marega C; Maida P; Schiavone S; Marigo A; Villari A J Forensic Sci; 2008 Nov; 53(6):1468-73. PubMed ID: 18752549 [TBL] [Abstract][Full Text] [Related]
39. Lead(II) Formate in Rembrandt's Night Watch: Detection and Distribution from the Macro- to the Micro-scale. Gonzalez V; Fazlic I; Cotte M; Vanmeert F; Gestels A; De Meyer S; Broers F; Hermans J; van Loon A; Janssens K; Noble P; Keune K Angew Chem Int Ed Engl; 2023 Apr; 62(16):e202216478. PubMed ID: 36591906 [TBL] [Abstract][Full Text] [Related]
40. Recognizing ancient papyri by a combination of spectroscopic, diffractional and chromatographic analytical tools. Łojewska J; Rabin I; Pawcenis D; Bagniuk J; Aksamit-Koperska MA; Sitarz M; Missori M; Krutzsch M Sci Rep; 2017 Apr; 7():46236. PubMed ID: 28382971 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]