These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 33106484)

  • 1. Vortex phase matching as a strategy for schooling in robots and in fish.
    Li L; Nagy M; Graving JM; Bak-Coleman J; Xie G; Couzin ID
    Nat Commun; 2020 Oct; 11(1):5408. PubMed ID: 33106484
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based observer and feedback control design for a rigid Joukowski foil in a Kármán vortex street.
    Free BA; Paley DA
    Bioinspir Biomim; 2018 Mar; 13(3):035001. PubMed ID: 29355109
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In-line swimming dynamics revealed by fish interacting with a robotic mechanism.
    Thandiackal R; Lauder G
    Elife; 2023 Feb; 12():. PubMed ID: 36744863
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fish can save energy via proprioceptive sensing.
    Li L; Liu D; Deng J; Lutz MJ; Xie G
    Bioinspir Biomim; 2021 Aug; 16(5):. PubMed ID: 34284360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using a robotic platform to study the influence of relative tailbeat phase on the energetic costs of side-by-side swimming in fish.
    Li L; Ravi S; Xie G; Couzin ID
    Proc Math Phys Eng Sci; 2021 May; 477(2249):20200810. PubMed ID: 35153556
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tail Beat Synchronization during Schooling Requires a Functional Posterior Lateral Line System in Giant Danios, Devario aequipinnatus.
    Mekdara PJ; Nasimi F; Schwalbe MAB; Tytell ED
    Integr Comp Biol; 2021 Sep; 61(2):427-441. PubMed ID: 33982077
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model of the lateral line of fish for vortex sensing.
    Ren Z; Mohseni K
    Bioinspir Biomim; 2012 Sep; 7(3):036016. PubMed ID: 22585366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Learning hydrodynamic signatures through proprioceptive sensing by bioinspired swimmers.
    Pollard B; Tallapragada P
    Bioinspir Biomim; 2021 Jan; 16(2):. PubMed ID: 33271521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved swimming performance in schooling fish via leading-edge vortex enhancement.
    Seo JH; Mittal R
    Bioinspir Biomim; 2022 Nov; 17(6):. PubMed ID: 36261046
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic advantages of in-line schooling.
    Saadat M; Berlinger F; Sheshmani A; Nagpal R; Lauder GV; Haj-Hariri H
    Bioinspir Biomim; 2021 May; 16(4):. PubMed ID: 33513591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrodynamic model of fish orientation in a channel flow.
    Porfiri M; Zhang P; Peterson SD
    Elife; 2022 Jun; 11():. PubMed ID: 35666104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A comprehensive review of hydrodynamic studies on fish schooling.
    Ligman M; Lund J; Fürth M
    Bioinspir Biomim; 2023 Dec; 19(1):. PubMed ID: 38061054
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Artificial lateral line based local sensing between two adjacent robotic fish.
    Zheng X; Wang C; Fan R; Xie G
    Bioinspir Biomim; 2017 Nov; 13(1):016002. PubMed ID: 28949301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow.
    Liao JC
    J Exp Biol; 2006 Oct; 209(Pt 20):4077-90. PubMed ID: 17023602
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dipole- and vortex sheet-based models of fish swimming.
    Zhang P; Peterson SD; Porfiri M
    J Theor Biol; 2023 Jan; 556():111313. PubMed ID: 36261068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Undulatory locomotion of flexible foils as biomimetic models for understanding fish propulsion.
    Shelton RM; Thornycroft PJ; Lauder GV
    J Exp Biol; 2014 Jun; 217(Pt 12):2110-20. PubMed ID: 24625649
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The hydrodynamic advantages of synchronized swimming in a rectangular pattern.
    Daghooghi M; Borazjani I
    Bioinspir Biomim; 2015 Oct; 10(5):056018. PubMed ID: 26447493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy conservation by collective movement in schooling fish.
    Zhang Y; Lauder GV
    Elife; 2024 Feb; 12():. PubMed ID: 38375853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Undulating fins produce off-axis thrust and flow structures.
    Neveln ID; Bale R; Bhalla AP; Curet OM; Patankar NA; MacIver MA
    J Exp Biol; 2014 Jan; 217(Pt 2):201-13. PubMed ID: 24072799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Man-made flows from a fish's perspective: autonomous classification of turbulent fishway flows with field data collected using an artificial lateral line.
    Tuhtan JA; Fuentes-Perez JF; Toming G; Schneider M; Schwarzenberger R; Schletterer M; Kruusmaa M
    Bioinspir Biomim; 2018 May; 13(4):046006. PubMed ID: 29629711
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.