These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 33106685)

  • 21. Computational methods for RNA modification detection from nanopore direct RNA sequencing data.
    Furlan M; Delgado-Tejedor A; Mulroney L; Pelizzola M; Novoa EM; Leonardi T
    RNA Biol; 2021 Oct; 18(sup1):31-40. PubMed ID: 34559589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RNA modifications detection by comparative Nanopore direct RNA sequencing.
    Leger A; Amaral PP; Pandolfini L; Capitanchik C; Capraro F; Miano V; Migliori V; Toolan-Kerr P; Sideri T; Enright AJ; Tzelepis K; van Werven FJ; Luscombe NM; Barbieri I; Ule J; Fitzgerald T; Birney E; Leonardi T; Kouzarides T
    Nat Commun; 2021 Dec; 12(1):7198. PubMed ID: 34893601
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nm-Nano: a machine learning framework for transcriptome-wide single-molecule mapping of 2´-O-methylation (Nm) sites in nanopore direct RNA sequencing datasets.
    Hassan D; Ariyur A; Daulatabad SV; Mir Q; Janga SC
    RNA Biol; 2024 Jan; 21(1):1-15. PubMed ID: 38758523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detection of m6A from direct RNA sequencing using a multiple instance learning framework.
    Hendra C; Pratanwanich PN; Wan YK; Goh WSS; Thiery A; Göke J
    Nat Methods; 2022 Dec; 19(12):1590-1598. PubMed ID: 36357692
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of high-confidence human poly(A) RNA isoform scaffolds using nanopore sequencing.
    Mulroney L; Wulf MG; Schildkraut I; Tzertzinis G; Buswell J; Jain M; Olsen H; Diekhans M; Corrêa IR; Akeson M; Ettwiller L
    RNA; 2022 Feb; 28(2):162-176. PubMed ID: 34728536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome profiling analysis of tea plant (Camellia sinensis) using Oxford Nanopore long-read RNA-Seq technology.
    Wang F; Chen Z; Pei H; Guo Z; Wen D; Liu R; Song B
    Gene; 2021 Feb; 769():145247. PubMed ID: 33096183
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Direct RNA sequencing enables m
    Lorenz DA; Sathe S; Einstein JM; Yeo GW
    RNA; 2020 Jan; 26(1):19-28. PubMed ID: 31624092
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular barcoding of native RNAs using nanopore sequencing and deep learning.
    Smith MA; Ersavas T; Ferguson JM; Liu H; Lucas MC; Begik O; Bojarski L; Barton K; Novoa EM
    Genome Res; 2020 Sep; 30(9):1345-1353. PubMed ID: 32907883
    [TBL] [Abstract][Full Text] [Related]  

  • 29. EpiNano: Detection of m
    Liu H; Begik O; Novoa EM
    Methods Mol Biol; 2021; 2298():31-52. PubMed ID: 34085237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Improving RNA-Seq expression estimation by modeling isoform- and exon-specific read sequencing rate.
    Liu X; Shi X; Chen C; Zhang L
    BMC Bioinformatics; 2015 Oct; 16():332. PubMed ID: 26475308
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High throughput error corrected Nanopore single cell transcriptome sequencing.
    Lebrigand K; Magnone V; Barbry P; Waldmann R
    Nat Commun; 2020 Aug; 11(1):4025. PubMed ID: 32788667
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-Wide Approaches for RNA Structure Probing.
    Silverman IM; Berkowitz ND; Gosai SJ; Gregory BD
    Adv Exp Med Biol; 2016; 907():29-59. PubMed ID: 27256381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Direct RNA Nanopore Sequencing of Pseudomonas aeruginosa Clone C Transcriptomes.
    Pust MM; Davenport CF; Wiehlmann L; Tümmler B
    J Bacteriol; 2022 Jan; 204(1):e0041821. PubMed ID: 34780302
    [TBL] [Abstract][Full Text] [Related]  

  • 34. DRUMMER-rapid detection of RNA modifications through comparative nanopore sequencing.
    Abebe JS; Price AM; Hayer KE; Mohr I; Weitzman MD; Wilson AC; Depledge DP
    Bioinformatics; 2022 May; 38(11):3113-3115. PubMed ID: 35426900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcript Profiling Using Long-Read Sequencing Technologies.
    Bayega A; Wang YC; Oikonomopoulos S; Djambazian H; Fahiminiya S; Ragoussis J
    Methods Mol Biol; 2018; 1783():121-147. PubMed ID: 29767360
    [TBL] [Abstract][Full Text] [Related]  

  • 36. StructureFold: genome-wide RNA secondary structure mapping and reconstruction in vivo.
    Tang Y; Bouvier E; Kwok CK; Ding Y; Nekrutenko A; Bevilacqua PC; Assmann SM
    Bioinformatics; 2015 Aug; 31(16):2668-75. PubMed ID: 25886980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Direct full-length RNA sequencing reveals unexpected transcriptome complexity during
    Li R; Ren X; Ding Q; Bi Y; Xie D; Zhao Z
    Genome Res; 2020 Feb; 30(2):287-298. PubMed ID: 32024662
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Direct Analysis of HIV mRNA m
    Honeycutt E; Kizito F; Karn J; Sweet T
    Methods Mol Biol; 2024; 2807():209-227. PubMed ID: 38743231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamic nanopore long-read sequencing analysis of HIV-1 splicing events during the early steps of infection.
    Nguyen Quang N; Goudey S; Ségéral E; Mohammad A; Lemoine S; Blugeon C; Versapuech M; Paillart JC; Berlioz-Torrent C; Emiliani S; Gallois-Montbrun S
    Retrovirology; 2020 Aug; 17(1):25. PubMed ID: 32807178
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A survey of the complex transcriptome from the highly polyploid sugarcane genome using full-length isoform sequencing and de novo assembly from short read sequencing.
    Hoang NV; Furtado A; Mason PJ; Marquardt A; Kasirajan L; Thirugnanasambandam PP; Botha FC; Henry RJ
    BMC Genomics; 2017 May; 18(1):395. PubMed ID: 28532419
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.