BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

573 related articles for article (PubMed ID: 33106757)

  • 1. Probing infectious disease by single-cell RNA sequencing: Progresses and perspectives.
    Luo G; Gao Q; Zhang S; Yan B
    Comput Struct Biotechnol J; 2020; 18():2962-2971. PubMed ID: 33106757
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational solutions for spatial transcriptomics.
    Kleino I; Frolovaitė P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unambiguous detection of SARS-CoV-2 subgenomic mRNAs with single-cell RNA sequencing.
    Cohen P; DeGrace EJ; Danziger O; Patel RS; Barrall EA; Bobrowski T; Kehrer T; Cupic A; Miorin L; García-Sastre A; Rosenberg BR
    Microbiol Spectr; 2023 Sep; 11(5):e0077623. PubMed ID: 37676044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enriching and Characterizing T Cell Repertoires from 3' Barcoded Single-Cell Whole Transcriptome Amplification Products.
    Jivanjee T; Ibrahim S; Nyquist SK; Gatter GJ; Bromley JD; Jaiswal S; Berger B; Behar SM; Love JC; Shalek AK
    Methods Mol Biol; 2022; 2574():159-182. PubMed ID: 36087201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualization of Single Cell RNA-Seq Data Using t-SNE in R.
    Zhou B; Jin W
    Methods Mol Biol; 2020; 2117():159-167. PubMed ID: 31960377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing Single-Cell RNA-seq Data with Semisupervised Principal Component Analysis.
    Liu Z
    Int J Mol Sci; 2020 Aug; 21(16):. PubMed ID: 32806757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrop enables droplet-based single-cell ATAC-seq and single-cell RNA-seq using dissolvable hydrogel beads.
    De Rop FV; Ismail JN; Bravo González-Blas C; Hulselmans GJ; Flerin CC; Janssens J; Theunis K; Christiaens VM; Wouters J; Marcassa G; de Wit J; Poovathingal S; Aerts S
    Elife; 2022 Feb; 11():. PubMed ID: 35195064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visual Genomics Analysis Studio as a Tool to Analyze Multiomic Data.
    Hertzman RJ; Deshpande P; Leary S; Li Y; Ram R; Chopra A; Cooper D; Watson M; Palubinsky AM; Mallal S; Gibson A; Phillips EJ
    Front Genet; 2021; 12():642012. PubMed ID: 34220932
    [TBL] [Abstract][Full Text] [Related]  

  • 9. No detectable alloreactive transcriptional responses under standard sample preparation conditions during donor-multiplexed single-cell RNA sequencing of peripheral blood mononuclear cells.
    McGinnis CS; Siegel DA; Xie G; Hartoularos G; Stone M; Ye CJ; Gartner ZJ; Roan NR; Lee SA
    BMC Biol; 2021 Jan; 19(1):10. PubMed ID: 33472616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FB5P-seq: FACS-Based 5-Prime End Single-Cell RNA-seq for Integrative Analysis of Transcriptome and Antigen Receptor Repertoire in B and T Cells.
    Attaf N; Cervera-Marzal I; Dong C; Gil L; Renand A; Spinelli L; Milpied P
    Front Immunol; 2020; 11():216. PubMed ID: 32194545
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analyzing Single Cell RNA Sequencing with Topological Nonnegative Matrix Factorization.
    Hozumi Y; Wei GW
    J Comput Appl Math; 2024 Aug; 445():. PubMed ID: 38464901
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell transcriptomic and chromatin accessibility analyses of dairy cattle peripheral blood mononuclear cells and their responses to lipopolysaccharide.
    Gao Y; Li J; Cai G; Wang Y; Yang W; Li Y; Zhao X; Li R; Gao Y; Tuo W; Baldwin RL; Li CJ; Fang L; Liu GE
    BMC Genomics; 2022 Apr; 23(1):338. PubMed ID: 35501711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of single-cell RNA sequencing technology in liver diseases: a narrative review.
    He L; Lu A; Qin L; Zhang Q; Ling H; Tan D; He Y
    Ann Transl Med; 2021 Oct; 9(20):1598. PubMed ID: 34790804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MOI is a comprehensive database collecting processed multi-omics data associated with viral infection.
    Guo X; Zhao Y; You F
    Sci Rep; 2024 Jun; 14(1):14725. PubMed ID: 38926513
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sample Preparation and Integrative Data Analysis of a Droplet-based Single-Cell ATAC-sequencing Using Murine Thymic Epithelial Cells.
    Ishikawa T; Ishii H; Miyao T; Horie K; Miyauchi M; Akiyama N; Akiyama T
    Bio Protoc; 2023 Jan; 13(1):e4588. PubMed ID: 36789086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-cell RNA sequencing analysis of human kidney reveals the presence of ACE2 receptor: A potential pathway of COVID-19 infection.
    He Q; Mok TN; Yun L; He C; Li J; Pan J
    Mol Genet Genomic Med; 2020 Oct; 8(10):e1442. PubMed ID: 32744436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The scRNA-seq Expression Profiling of the Receptor ACE2 and the Cellular Protease TMPRSS2 Reveals Human Organs Susceptible to SARS-CoV-2 Infection.
    Qi J; Zhou Y; Hua J; Zhang L; Bian J; Liu B; Zhao Z; Jin S
    Int J Environ Res Public Health; 2021 Jan; 18(1):. PubMed ID: 33401657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Comparison for Dimensionality Reduction Methods of Single-Cell RNA-seq Data.
    Xiang R; Wang W; Yang L; Wang S; Xu C; Chen X
    Front Genet; 2021; 12():646936. PubMed ID: 33833778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of single-cell RNA sequencing in virology.
    Qu L; Li S; Qiu HJ
    Yi Chuan; 2020 Mar; 42(3):269-277. PubMed ID: 32217512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reference Transcriptomes of Porcine Peripheral Immune Cells Created Through Bulk and Single-Cell RNA Sequencing.
    Herrera-Uribe J; Wiarda JE; Sivasankaran SK; Daharsh L; Liu H; Byrne KA; Smith TPL; Lunney JK; Loving CL; Tuggle CK
    Front Genet; 2021; 12():689406. PubMed ID: 34249103
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.