BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33106934)

  • 1. Comparing in vitro human liver models to in vivo human liver using RNA-Seq.
    Gupta R; Schrooders Y; Hauser D; van Herwijnen M; Albrecht W; Ter Braak B; Brecklinghaus T; Castell JV; Elenschneider L; Escher S; Guye P; Hengstler JG; Ghallab A; Hansen T; Leist M; Maclennan R; Moritz W; Tolosa L; Tricot T; Verfaillie C; Walker P; van de Water B; Kleinjans J; Caiment F
    Arch Toxicol; 2021 Feb; 95(2):573-589. PubMed ID: 33106934
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic transcriptome-based comparison of cellular adaptive stress response activation networks in hepatic stem cell-derived progeny and primary human hepatocytes.
    Ter Braak B; Niemeijer M; Boon R; Parmentier C; Baze A; Richert L; Huppelschoten S; Wink S; Verfaillie C; van de Water B
    Toxicol In Vitro; 2021 Jun; 73():105107. PubMed ID: 33545341
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical differences in drug metabolic properties of human hepatic cellular models, including primary human hepatocytes, stem cell derived hepatocytes, and hepatoma cell lines.
    Kvist AJ; Kanebratt KP; Walentinsson A; Palmgren H; O'Hara M; Björkbom A; Andersson LC; Ahlqvist M; Andersson TB
    Biochem Pharmacol; 2018 Sep; 155():124-140. PubMed ID: 29953844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of an FXR-modulated liver-intestine hybrid state in iPSC-derived hepatocyte-like cells.
    Nell P; Kattler K; Feuerborn D; Hellwig B; Rieck A; Salhab A; Lepikhov K; Gasparoni G; Thomitzek A; Belgasmi K; Blüthgen N; Morkel M; Küppers-Munther B; Godoy P; Hay DC; Cadenas C; Marchan R; Vartak N; Edlund K; Rahnenführer J; Walter J; Hengstler JG
    J Hepatol; 2022 Nov; 77(5):1386-1398. PubMed ID: 35863491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Baseline and genotoxic compound induced gene expression profiles in HepG2 and HepaRG compared to primary human hepatocytes.
    Jetten MJ; Kleinjans JC; Claessen SM; Chesné C; van Delft JH
    Toxicol In Vitro; 2013 Oct; 27(7):2031-40. PubMed ID: 23911569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concentration-dependent toxicogenomic changes of silver nanoparticles in hepatocyte-like cells derived from human induced pluripotent stem cells.
    Gao X; Li R; Sprando RL; Yourick JJ
    Cell Biol Toxicol; 2021 Apr; 37(2):245-259. PubMed ID: 32447489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. hiPSC-derived hepatocytes closely mimic the lipid profile of primary hepatocytes: A future personalised cell model for studying the lipid metabolism of the liver.
    Kiamehr M; Alexanova A; Viiri LE; Heiskanen L; Vihervaara T; Kauhanen D; Ekroos K; Laaksonen R; Käkelä R; Aalto-Setälä K
    J Cell Physiol; 2019 Apr; 234(4):3744-3761. PubMed ID: 30146765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transcriptomic study suggesting human iPSC-derived hepatocytes potentially offer a better in vitro model of hepatotoxicity than most hepatoma cell lines.
    Gao X; Liu Y
    Cell Biol Toxicol; 2017 Aug; 33(4):407-421. PubMed ID: 28144825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional, Functional, and Mechanistic Comparisons of Stem Cell-Derived Hepatocytes, HepaRG Cells, and Three-Dimensional Human Hepatocyte Spheroids as Predictive In Vitro Systems for Drug-Induced Liver Injury.
    Bell CC; Lauschke VM; Vorrink SU; Palmgren H; Duffin R; Andersson TB; Ingelman-Sundberg M
    Drug Metab Dispos; 2017 Apr; 45(4):419-429. PubMed ID: 28137721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues.
    Hart SN; Li Y; Nakamoto K; Subileau EA; Steen D; Zhong XB
    Drug Metab Dispos; 2010 Jun; 38(6):988-94. PubMed ID: 20228232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hepatocyte-like cells derived from human induced pluripotent stem cells using small molecules: implications of a transcriptomic study.
    Gao X; Li R; Cahan P; Zhao Y; Yourick JJ; Sprando RL
    Stem Cell Res Ther; 2020 Sep; 11(1):393. PubMed ID: 32917265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of differentially expressed genes among human hair follicle-derived iPSCs, induced hepatocyte-like cells, and primary hepatocytes.
    Xu Z; He X; Shi X; Xia Y; Liu X; Wu H; Li P; Zhang H; Yin W; Du X; Li L; Li Y
    Stem Cell Res Ther; 2018 Aug; 9(1):211. PubMed ID: 30092828
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA-Seq gene expression profiling of HepG2 cells: the influence of experimental factors and comparison with liver tissue.
    Tyakht AV; Ilina EN; Alexeev DG; Ischenko DS; Gorbachev AY; Semashko TA; Larin AK; Selezneva OV; Kostryukova ES; Karalkin PA; Vakhrushev IV; Kurbatov LK; Archakov AI; Govorun VM
    BMC Genomics; 2014 Dec; 15(1):1108. PubMed ID: 25511409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. RNA-Seq transcriptomics and pathway analyses reveal potential regulatory genes and molecular mechanisms in high- and low-residual feed intake in Nordic dairy cattle.
    Salleh MS; Mazzoni G; Höglund JK; Olijhoek DW; Lund P; Løvendahl P; Kadarmideen HN
    BMC Genomics; 2017 Mar; 18(1):258. PubMed ID: 28340555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicogenomics-based prediction of acetaminophen-induced liver injury using human hepatic cell systems.
    Rodrigues RM; Heymans A; De Boe V; Sachinidis A; Chaudhari U; Govaere O; Roskams T; Vanhaecke T; Rogiers V; De Kock J
    Toxicol Lett; 2016 Jan; 240(1):50-9. PubMed ID: 26497421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-Seq provides new insights in the transcriptome responses induced by the carcinogen benzo[a]pyrene.
    van Delft J; Gaj S; Lienhard M; Albrecht MW; Kirpiy A; Brauers K; Claessen S; Lizarraga D; Lehrach H; Herwig R; Kleinjans J
    Toxicol Sci; 2012 Dec; 130(2):427-39. PubMed ID: 22889811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amino acid levels determine metabolism and CYP450 function of hepatocytes and hepatoma cell lines.
    Boon R; Kumar M; Tricot T; Elia I; Ordovas L; Jacobs F; One J; De Smedt J; Eelen G; Bird M; Roelandt P; Doglioni G; Vriens K; Rossi M; Vazquez MA; Vanwelden T; Chesnais F; El Taghdouini A; Najimi M; Sokal E; Cassiman D; Snoeys J; Monshouwer M; Hu WS; Lange C; Carmeliet P; Fendt SM; Verfaillie CM
    Nat Commun; 2020 Mar; 11(1):1393. PubMed ID: 32170132
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NADPH-cytochrome P450 reductase expression and enzymatic activity in primary-like human hepatocytes and HepG2 cells for in vitro biotransformation studies.
    Schulz C; Kammerer S; Küpper JH
    Clin Hemorheol Microcirc; 2019; 73(1):249-260. PubMed ID: 31561354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epigenetic Modifications of the Liver Tumor Cell Line HepG2 Increase Their Drug Metabolic Capacity.
    Ruoß M; Damm G; Vosough M; Ehret L; Grom-Baumgarten C; Petkov M; Naddalin S; Ladurner R; Seehofer D; Nussler A; Sajadian S
    Int J Mol Sci; 2019 Jan; 20(2):. PubMed ID: 30654452
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative analysis of 3D culture methods on human HepG2 cells.
    Luckert C; Schulz C; Lehmann N; Thomas M; Hofmann U; Hammad S; Hengstler JG; Braeuning A; Lampen A; Hessel S
    Arch Toxicol; 2017 Jan; 91(1):393-406. PubMed ID: 26872951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.