These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 33106960)

  • 1. Anatomy and lignin deposition of stone cell in Camellia oleifera shell during the young stage.
    Wang Q; Hu J; Yang T; Chang S
    Protoplasma; 2021 Mar; 258(2):361-370. PubMed ID: 33106960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anatomical structure of Camellia oleifera shell.
    Hu J; Shi Y; Liu Y; Chang S
    Protoplasma; 2018 Nov; 255(6):1777-1784. PubMed ID: 29868989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mesopore structure in Camellia Oleifera shell.
    Wang Q; Chang S; Tan Y; Hu J
    Protoplasma; 2019 Jul; 256(4):1145-1151. PubMed ID: 30953174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural variations of lignin and lignin-carbohydrate complexes from the fruit shells of Camellia oleifera during ripening.
    Cheng X; Ning R; Li P; Zhang F; Wang K; Jiang J
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126946. PubMed ID: 37722639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient Preparation of Biodiesel Using Sulfonated
    Yang Z; Wang Y; Wu X; Quan W; Chen Q; Wang A
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38930818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xylo-oligosaccharides and lignin production from Camellia oleifera shell by malic acid hydrolysis at mild conditions.
    Zhang L; Zhang W; Zhang F; Jiang J
    Bioresour Technol; 2021 Dec; 341():125897. PubMed ID: 34523561
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An integrated process to produce ethanol, vanillin, and xylooligosaccharides from Camellia oleifera shell.
    Zhu J; Zhu Y; Jiang F; Xu Y; Ouyang J; Yu S
    Carbohydr Res; 2013 Dec; 382():52-7. PubMed ID: 24188806
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Camellia oleifera shell as an alternative feedstock for furfural production using a high surface acidity solid acid catalyst.
    Zhang L; He Y; Zhu Y; Liu Y; Wang X
    Bioresour Technol; 2018 Feb; 249():536-541. PubMed ID: 29080517
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PbrMYB169 positively regulates lignification of stone cells in pear fruit.
    Xue C; Yao JL; Xue YS; Su GQ; Wang L; Lin LK; Allan AC; Zhang SL; Wu J
    J Exp Bot; 2019 Mar; 70(6):1801-1814. PubMed ID: 30715420
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects on stone cell development and lignin deposition in pears by different pollinators.
    Yan C; Zhang N; Xu C; Jin Q; Qi Y; Cai Y
    Front Plant Sci; 2023; 14():1093661. PubMed ID: 36844042
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of Stone (Hardened Endocarp) Formation in Fruits: An Attempt toward Pitless Fruits, and Its Advantages and Disadvantages.
    Khan MKU; Muhammad N; Jia Z; Peng J; Liu M
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36421798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CcBLH6, a bell-like homeodomain-containing transcription factor, regulates the fruit lignification pattern.
    Yan C; Hu Z; Nie Z; Li J; Yao X; Yin H
    Planta; 2021 Apr; 253(5):90. PubMed ID: 33818691
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications of Chinese
    Quan W; Wang A; Gao C; Li C
    Front Chem; 2022; 10():921246. PubMed ID: 35685348
    [No Abstract]   [Full Text] [Related]  

  • 14. Transcriptomic Time-Course Sequencing: Insights into the Cell Wall Macromolecule-Mediated Fruit Dehiscence during Ripening in
    Sheng Y; Yao X; Liu L; Yu C; Wang K; Wang K; Chang J; Chen J; Cao Y
    Plants (Basel); 2023 Sep; 12(18):. PubMed ID: 37765478
    [No Abstract]   [Full Text] [Related]  

  • 15. Comparative study on fruit development and oil synthesis in two cultivars of Camellia oleifera.
    Zhang F; Li Z; Zhou J; Gu Y; Tan X
    BMC Plant Biol; 2021 Jul; 21(1):348. PubMed ID: 34301189
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study on biomolecules in extractives of
    Xie Y; Ge S; Jiang S; Liu Z; Chen L; Wang L; Chen J; Qin L; Peng W
    Saudi J Biol Sci; 2018 Feb; 25(2):234-236. PubMed ID: 29472770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal pyrolysis characteristics and kinetics of hemicellulose isolated from Camellia Oleifera Shell.
    Lei Z; Wang S; Fu H; Gao W; Wang B; Zeng J; Xu J
    Bioresour Technol; 2019 Jun; 282():228-235. PubMed ID: 30870688
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptome and metabolome analyses provide insights into the relevance of pericarp thickness variations in
    Li Y; Liao B; Wang Y; Luo H; Wang S; Li C; Song W; Zhang K; Yang B; Lu S; Zhang B; Li Y
    Front Plant Sci; 2022; 13():1016475. PubMed ID: 36388553
    [No Abstract]   [Full Text] [Related]  

  • 19. Trends in lignin modification: a comprehensive analysis of the effects of genetic manipulations/mutations on lignification and vascular integrity.
    Anterola AM; Lewis NG
    Phytochemistry; 2002 Oct; 61(3):221-94. PubMed ID: 12359514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of different additives on the chemical composition and microbial diversity during composting of Camellia oleifera shell.
    Zhang J; Zhang T; Ying Y; Yao X
    Bioresour Technol; 2021 Jun; 330():124990. PubMed ID: 33756181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.