BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33107224)

  • 1. Cell-Free Synthesis of Dopamine and Serotonin in Two Steps with Purified Enzymes.
    Groaz A; Galvan S; Valer L; Rossetto D; Benedetti F; Guella G; Toparlak ÖD; Mansy SS
    Adv Biosyst; 2020 Nov; 4(11):e2000118. PubMed ID: 33107224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genetic dissection of monoamine neurotransmitter synthesis in Drosophila.
    Livingstone MS; Tempel BL
    Nature; 1983 May 5-11; 303(5912):67-70. PubMed ID: 6133219
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Synthesis of monoamines by non-monoaminergic neurons: illusion or reality?].
    Ugrumov MV
    J Soc Biol; 2009; 203(1):75-85. PubMed ID: 19358813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chlamydia pneumoniae encodes a functional aromatic amino acid hydroxylase.
    Abromaitis S; Hefty PS; Stephens RS
    FEMS Immunol Med Microbiol; 2009 Mar; 55(2):196-205. PubMed ID: 19141112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Role of aromatic L-amino acid decarboxylase for dopamine replacement by genetically modified fibroblasts in a rat model of Parkinson's disease.
    Wachtel SR; Bencsics C; Kang UJ
    J Neurochem; 1997 Nov; 69(5):2055-63. PubMed ID: 9349551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure and substrate specificity of Drosophila 3,4-dihydroxyphenylalanine decarboxylase.
    Han Q; Ding H; Robinson H; Christensen BM; Li J
    PLoS One; 2010 Jan; 5(1):e8826. PubMed ID: 20098687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and developmental expression of the enzymes responsible for dopamine, histamine, octopamine and serotonin biosynthesis in the copepod crustacean Calanus finmarchicus.
    Christie AE; Fontanilla TM; Roncalli V; Cieslak MC; Lenz PH
    Gen Comp Endocrinol; 2014 Jan; 195():28-39. PubMed ID: 24148657
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical characterization and synthetic application of aromatic L-amino acid decarboxylase from Bacillus atrophaeus.
    Choi Y; Han SW; Kim JS; Jang Y; Shin JS
    Appl Microbiol Biotechnol; 2021 Apr; 105(7):2775-2785. PubMed ID: 33713143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Seasonal postembryonic maturation of the diurnal rhythm of serotonin in the chicken pineal gland.
    Piesiewicz A; Kedzierska U; Turkowska E; Adamska I; Majewski PM
    Chronobiol Int; 2015 Feb; 32(1):59-70. PubMed ID: 25222180
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Brain neurons partly expressing monoaminergic phenotype: distribution, development, and functional significance].
    Ugriumov MV
    Usp Fiziol Nauk; 2007; 38(2):3-25. PubMed ID: 17578016
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous determination of in vivo hydroxylation of tyrosine and tryptophan in rat striatum by microdialysis-HPLC: relationship between dopamine and serotonin biosynthesis.
    Hashiguti H; Nakahara D; Maruyama W; Naoi M; Ikeda T
    J Neural Transm Gen Sect; 1993; 93(3):213-23. PubMed ID: 7692885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic L-amino acid decarboxylase-immunoreactive neurons in and around the cerebrospinal fluid-contacting neurons of the central canal do not contain dopamine or serotonin in the mouse and rat spinal cord.
    Nagatsu I; Sakai M; Yoshida M; Nagatsu T
    Brain Res; 1988 Dec; 475(1):91-102. PubMed ID: 3214730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Interactions of cerebral serotonin and catecholamines].
    Watanabe Y
    Nihon Yakurigaku Zasshi; 1983 May; 81(5):365-83. PubMed ID: 6195056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular genetics of dopa decarboxylase and biogenic amines in Drosophila.
    Hirsh J
    Dev Genet; 1989; 10(3):232-8. PubMed ID: 2500287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural and functional analogies and differences between histidine decarboxylase and aromatic l-amino acid decarboxylase molecular networks: Biomedical implications.
    Sanchez-Jiménez F; Pino-Ángeles A; Rodríguez-López R; Morales M; Urdiales JL
    Pharmacol Res; 2016 Dec; 114():90-102. PubMed ID: 27769832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Decarboxylation of L-dopa and 5-hydroxytryptophan in dispersed rat pancreas acinar cells.
    Yu EW; Stern L; Tenenhouse A
    Pharmacology; 1984; 29(4):185-92. PubMed ID: 6494232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of Dopamine by Aromatic l-Amino Acid Decarboxylase Cells after Spinal Cord Injury.
    Ren LQ; Wienecke J; Hultborn H; Zhang M
    J Neurotrauma; 2016 Jun; 33(12):1150-60. PubMed ID: 26830512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of neonatal bilateral eye enucleation on postnatal development of the monoamines in posterior thalamus of the rat.
    Vizuete ML; Santiago M; Herrera AJ; Venero JL; Machado A; Cano J
    J Neural Transm Gen Sect; 1991; 85(3):231-42. PubMed ID: 1681825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. L-3,4-Dihydroxyphenylalanine and L-5-hydroxytryptophan decarboxylase activities in rat striatum: effect of selective destruction of dopaminergic or serotoninergic input.
    Melamed E; Hefti F; Wurtman RJ
    J Neurochem; 1980 Jun; 34(6):1753-6. PubMed ID: 7381499
    [No Abstract]   [Full Text] [Related]  

  • 20. Coexpression of tyrosine hydroxylase, GTP cyclohydrolase I, aromatic amino acid decarboxylase, and vesicular monoamine transporter 2 from a helper virus-free herpes simplex virus type 1 vector supports high-level, long-term biochemical and behavioral correction of a rat model of Parkinson's disease.
    Sun M; Kong L; Wang X; Holmes C; Gao Q; Zhang GR; Pfeilschifter J; Goldstein DS; Geller AI
    Hum Gene Ther; 2004 Dec; 15(12):1177-96. PubMed ID: 15684695
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.