BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 33107298)

  • 1.
    Liu X; Cheng J; Zhu X; Zhang G; Yang S; Guo X; Jiang H; Ma Y
    ACS Synth Biol; 2020 Nov; 9(11):3042-3051. PubMed ID: 33107298
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two CYP82D Enzymes Function as Flavone Hydroxylases in the Biosynthesis of Root-Specific 4'-Deoxyflavones in Scutellaria baicalensis.
    Zhao Q; Cui MY; Levsh O; Yang D; Liu J; Li J; Hill L; Yang L; Hu Y; Weng JK; Chen XY; Martin C
    Mol Plant; 2018 Jan; 11(1):135-148. PubMed ID: 28842248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis.
    Zhao Q; Zhang Y; Wang G; Hill L; Weng JK; Chen XY; Xue H; Martin C
    Sci Adv; 2016 Apr; 2(4):e1501780. PubMed ID: 27152350
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of two distinct flavone synthases for plant-specific flavone biosynthesis in Saccharomyces cerevisiae.
    Leonard E; Yan Y; Lim KH; Koffas MA
    Appl Environ Microbiol; 2005 Dec; 71(12):8241-8. PubMed ID: 16332809
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimization of Pinocembrin Biosynthesis in
    Tous Mohedano M; Mao J; Chen Y
    ACS Synth Biol; 2023 Jan; 12(1):144-152. PubMed ID: 36534476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine.
    Li J; Tian C; Xia Y; Mutanda I; Wang K; Wang Y
    Metab Eng; 2019 Mar; 52():124-133. PubMed ID: 30496827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flavone synthases from Medicago truncatula are flavanone-2-hydroxylases and are important for nodulation.
    Zhang J; Subramanian S; Zhang Y; Yu O
    Plant Physiol; 2007 Jun; 144(2):741-51. PubMed ID: 17434990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect and direct routes to C-glycosylated flavones in Saccharomyces cerevisiae.
    Vanegas KG; Larsen AB; Eichenberger M; Fischer D; Mortensen UH; Naesby M
    Microb Cell Fact; 2018 Jul; 17(1):107. PubMed ID: 29986709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recruitment of specific flavonoid B-ring hydroxylases for two independent biosynthesis pathways of flavone-derived metabolites in grasses.
    Lam PY; Lui ACW; Yamamura M; Wang L; Takeda Y; Suzuki S; Liu H; Zhu FY; Chen MX; Zhang J; Umezawa T; Tobimatsu Y; Lo C
    New Phytol; 2019 Jul; 223(1):204-219. PubMed ID: 30883799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Study advance in biosynthesis of flavone from Scutellaria].
    Yu-Min F; Meng-Ying C; Jie L; Tian-Lin P; Yu-Kun W; Qing Z
    Zhongguo Zhong Yao Za Zhi; 2020 Oct; 45(20):4819-4826. PubMed ID: 33350252
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biochemical Characterization of a Flavone Synthase I from Daucus carota and its Application for Bioconversion of Flavanones to Flavones.
    Zhang X; Qi Z; Fan X; Zhang H; Pei J; Zhao L
    Appl Biochem Biotechnol; 2023 Feb; 195(2):933-946. PubMed ID: 36242726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring native Scutellaria species provides insight into differential accumulation of flavones with medicinal properties.
    Costine B; Zhang M; Chhajed S; Pearson B; Chen S; Nadakuduti SS
    Sci Rep; 2022 Aug; 12(1):13201. PubMed ID: 35915209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Advance in flavonoids biosynthetic pathway and synthetic biology].
    Zou LQ; Wang CX; Kuang XJ; Li Y; Sun C
    Zhongguo Zhong Yao Za Zhi; 2016 Nov; 41(22):4124-4128. PubMed ID: 28933077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Completion of Tricin Biosynthesis Pathway in Rice: Cytochrome P450 75B4 Is a Unique Chrysoeriol 5'-Hydroxylase.
    Lam PY; Liu H; Lo C
    Plant Physiol; 2015 Aug; 168(4):1527-36. PubMed ID: 26082402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combinatorial biosynthesis of flavones and flavonols in Escherichia coli.
    Miyahisa I; Funa N; Ohnishi Y; Martens S; Moriguchi T; Horinouchi S
    Appl Microbiol Biotechnol; 2006 Jun; 71(1):53-8. PubMed ID: 16133333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production of methoxylated flavonoids in yeast using ring A hydroxylases and flavonoid O-methyltransferases from sweet basil.
    Berim A; Gang DR
    Appl Microbiol Biotechnol; 2018 Jul; 102(13):5585-5598. PubMed ID: 29705956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative Genome Analysis of Scutellaria baicalensis and Scutellaria barbata Reveals the Evolution of Active Flavonoid Biosynthesis.
    Xu Z; Gao R; Pu X; Xu R; Wang J; Zheng S; Zeng Y; Chen J; He C; Song J
    Genomics Proteomics Bioinformatics; 2020 Jun; 18(3):230-240. PubMed ID: 33157301
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Qian Z; Yu J; Chen X; Kang Y; Ren Y; Liu Q; Lu J; Zhao Q; Cai M
    ACS Synth Biol; 2022 Apr; 11(4):1600-1612. PubMed ID: 35389625
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel flavonoid C-8 hydroxylase from Rhodotorula glutinis: identification, characterization and substrate scope.
    Dulak K; Sordon S; Matera A; Kozak B; Huszcza E; Popłoński J
    Microb Cell Fact; 2022 Aug; 21(1):175. PubMed ID: 36038906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Convergent synthesis of moslosooflavone, isowogonin and norwogonin from chrysin.
    Jing LL; Fan XF; Jia ZP; Fan PC; Ma HP
    Nat Prod Commun; 2015 Mar; 10(3):387-8. PubMed ID: 25924511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.