These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 33107539)

  • 1. Low-threshold near-infrared lasing at room temperature using low-toxicity Ag
    Liao C; Tang L; Wang L; Li Y; Xu J; Jia Y
    Nanoscale; 2020 Nov; 12(42):21879-21884. PubMed ID: 33107539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward temperature-insensitive near-infrared optical gain using low-toxicity Ag
    Liao C; Tang L; Li Y; Sun S; Wang L; Xu J; Jia Y; Gu Z
    Nanoscale; 2022 Jul; 14(28):10169-10175. PubMed ID: 35796251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultralow Threshold One-Photon- and Two-Photon-Pumped Optical Gain Media of Blue-Emitting Colloidal Quantum Dot Films.
    Guzelturk B; Kelestemur Y; Akgul MZ; Sharma VK; Demir HV
    J Phys Chem Lett; 2014 Jul; 5(13):2214-8. PubMed ID: 26279536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amplified Spontaneous Emission and Lasing from Zn-Processed AgIn
    Mi Y; Jiang A; Kong L; Wang J; Guo H; Luo SN
    ACS Appl Mater Interfaces; 2023 Apr; 15(15):19330-19336. PubMed ID: 37018469
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultralow-Threshold Single-Mode Lasing from Phase-Pure CdSe/CdS Core/Shell Quantum Dots.
    Liao C; Xu R; Xu Y; Zhang C; Xiao M; Zhang L; Lu C; Cui Y; Zhang J
    J Phys Chem Lett; 2016 Dec; 7(24):4968-4976. PubMed ID: 27973873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal Quantum Dot Infrared Lasers Featuring Sub-Single-Exciton Threshold and Very High Gain.
    Taghipour N; Dalmases M; Whitworth GL; Dosil M; Othonos A; Christodoulou S; Liga SM; Konstantatos G
    Adv Mater; 2023 Jan; 35(1):e2207678. PubMed ID: 36333885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative Electrochemical Control over Optical Gain in Quantum-Dot Solids.
    Geuchies JJ; Brynjarsson B; Grimaldi G; Gudjonsdottir S; van der Stam W; Evers WH; Houtepen AJ
    ACS Nano; 2021 Jan; 15(1):377-386. PubMed ID: 33171052
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blood Clearance, Distribution, Transformation, Excretion, and Toxicity of Near-Infrared Quantum Dots Ag2Se in Mice.
    Tang H; Yang ST; Yang YF; Ke DM; Liu JH; Chen X; Wang H; Liu Y
    ACS Appl Mater Interfaces; 2016 Jul; 8(28):17859-69. PubMed ID: 27351208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A dry method to synthesize dendritic Ag2Se nanostructures utilizing CdSe quantum dots and Ag thin films.
    Hu L; Zhang B; Xu T; Li R; Wu H
    Nanotechnology; 2015 Jan; 26(1):015601. PubMed ID: 25483981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Threshold, Highly Stable Colloidal Quantum Dot Short-Wave Infrared Laser enabled by Suppression of Trap-Assisted Auger Recombination.
    Taghipour N; Whitworth GL; Othonos A; Dalmases M; Pradhan S; Wang Y; Kumar G; Konstantatos G
    Adv Mater; 2022 Jan; 34(3):e2107532. PubMed ID: 34762320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Continuous-wave infrared optical gain and amplified spontaneous emission at ultralow threshold by colloidal HgTe quantum dots.
    Geiregat P; Houtepen AJ; Sagar LK; Infante I; Zapata F; Grigel V; Allan G; Delerue C; Van Thourhout D; Hens Z
    Nat Mater; 2018 Jan; 17(1):35-42. PubMed ID: 29035357
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films.
    Dang C; Lee J; Breen C; Steckel JS; Coe-Sullivan S; Nurmikko A
    Nat Nanotechnol; 2012 Apr; 7(5):335-9. PubMed ID: 22543426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-mode lasing from colloidal water-soluble CdSe/CdS quantum dot-in-rods.
    Di Stasio F; Grim JQ; Lesnyak V; Rastogi P; Manna L; Moreels I; Krahne R
    Small; 2015 Mar; 11(11):1328-34. PubMed ID: 25335769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Achieving Optical Gain of the CsPbBr
    Qaid SMH; Ghaithan HM; Al-Asbahi BA; Aldwayyan AS
    ACS Omega; 2021 Mar; 6(8):5297-5309. PubMed ID: 33681570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single-Exciton Gain and Stimulated Emission Across the Infrared Telecom Band from Robust Heavily Doped PbS Colloidal Quantum Dots.
    Christodoulou S; Ramiro I; Othonos A; Figueroba A; Dalmases M; Özdemir O; Pradhan S; Itskos G; Konstantatos G
    Nano Lett; 2020 Aug; 20(8):5909-5915. PubMed ID: 32662655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Very rapid synthesis of highly efficient and biocompatible Ag
    Shahzad Shirazi M; Foroumadi A; Saberikia I; Moridi Farimani M
    Ultrason Sonochem; 2022 Jun; 87():106037. PubMed ID: 35709576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Nanowire-Based Plasmonic Quantum Dot Laser.
    Ho J; Tatebayashi J; Sergent S; Fong CF; Ota Y; Iwamoto S; Arakawa Y
    Nano Lett; 2016 Apr; 16(4):2845-50. PubMed ID: 27030886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biological behaviors and chemical fates of Ag
    Tang H; Yang ST; Ke DM; Yang YF; Liu JH; Chen X; Wang H; Liu Y
    Toxicol Res (Camb); 2017 Sep; 6(5):693-704. PubMed ID: 30090536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of biocompatibility Ag
    Liu J; Zheng D; Zhong L; Gong A; Wu S; Xie Z
    Biochem Biophys Res Commun; 2021 Mar; 544():60-64. PubMed ID: 33516883
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Photonic Crystal Laser from Solution Based Organo-Lead Iodide Perovskite Thin Films.
    Chen S; Roh K; Lee J; Chong WK; Lu Y; Mathews N; Sum TC; Nurmikko A
    ACS Nano; 2016 Apr; 10(4):3959-67. PubMed ID: 26997122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.