These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 33107541)

  • 1. Acceptorless dehydrogenative coupling with Ru-based catalysts for the synthesis of
    Zhang J; Guo B; Young DJ; Li HX
    Dalton Trans; 2020 Nov; 49(44):15527-15547. PubMed ID: 33107541
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acceptorless Dehydrogenative Coupling Using Ammonia: Direct Synthesis of N-Heteroaromatics from Diols Catalyzed by Ruthenium.
    Daw P; Ben-David Y; Milstein D
    J Am Chem Soc; 2018 Sep; 140(38):11931-11934. PubMed ID: 30205675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of ancillary ligands in selectivity towards acceptorless dehydrogenation
    Singh RK; Yadav D; Misra S; Singh AK
    Dalton Trans; 2023 Nov; 52(43):15878-15895. PubMed ID: 37830304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-Row Transition-Metal Catalyzed Acceptorless Dehydrogenation and Related Reactions: A Personal Account.
    Subaramanian M; Sivakumar G; Balaraman E
    Chem Rec; 2021 Dec; 21(12):3839-3871. PubMed ID: 34415674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Divergent Synthesis of Pyrazoles via Manganese Pincer Complex Catalyzed Acceptorless Dehydrogenative Coupling Reactions.
    Sarkar K; Kumar P; Mule A; Maji B
    Chemistry; 2024 Jun; 30(36):e202401105. PubMed ID: 38655822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Iron-Catalyzed Acceptorless Dehydrogenative Coupling of Alcohols With Aromatic Diamines: Selective Synthesis of 1,2-Disubstituted Benzimidazoles.
    Putta RR; Chun S; Lee SB; Oh DC; Hong S
    Front Chem; 2020; 8():429. PubMed ID: 32637390
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acceptorless dehydrogenation and dehydrogenative coupling of alcohols catalysed by protic NHC ruthenium complexes.
    Chang W; Gong X; Wang S; Xiao LP; Song G
    Org Biomol Chem; 2017 Apr; 15(16):3466-3471. PubMed ID: 28368057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ruthenium Catalyzed Dehydrogenation of Alcohols and Mechanistic Study.
    Awasthi MK; Singh SK
    Inorg Chem; 2019 Nov; 58(21):14912-14923. PubMed ID: 31625731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acceptorless dehydrogenative synthesis of primary amides from alcohols and ammonia.
    Luo J; Zhou QQ; Montag M; Ben-David Y; Milstein D
    Chem Sci; 2022 Mar; 13(13):3894-3901. PubMed ID: 35432908
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ruthenium-catalyzed acceptorless dehydrogenative coupling of amino alcohols and ynones to access 3-acylpyrroles.
    Pan M; Wang X; Tong Y; Qiu X; Zeng X; Xiong B
    Chem Commun (Camb); 2022 Feb; 58(14):2379-2382. PubMed ID: 35080540
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cobalt Nanoparticles Catalyzed N-Heterocycles Synthesis via Acceptorless Dehydrogenative Coupling.
    Ren C; Chen S; Yuan Z; Fu R; Cui Y; Ma Z; Li W; Li X
    Chemistry; 2024 Oct; 30(56):e202402168. PubMed ID: 39072825
    [TBL] [Abstract][Full Text] [Related]  

  • 12. One-Pot Cascade Synthesis of Quinazolin-4(3H)-ones via Nickel-Catalyzed Dehydrogenative Coupling of o-Aminobenzamides with Alcohols.
    Parua S; Das S; Sikari R; Sinha S; Paul ND
    J Org Chem; 2017 Jul; 82(14):7165-7175. PubMed ID: 28653839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Progressive study on ruthenium catalysis for de(hydrogenative) alkylation and alkenylation using alcohols as a sustainable source.
    Sharma R; Samanta A; Sardar B; Roy M; Srimani D
    Org Biomol Chem; 2022 Oct; 20(41):7998-8030. PubMed ID: 36200985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A nickel catalyzed acceptorless dehydrogenative approach to quinolines.
    Parua S; Sikari R; Sinha S; Das S; Chakraborty G; Paul ND
    Org Biomol Chem; 2018 Jan; 16(2):274-284. PubMed ID: 29242865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in nickel-catalyzed C-C and C-N bond formation via HA and ADC reactions.
    Subaramanian M; Sivakumar G; Balaraman E
    Org Biomol Chem; 2021 May; 19(19):4213-4227. PubMed ID: 33881121
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microwave-Assisted Synthesis of
    Pal A; Das KM; Thakur A
    J Org Chem; 2023 Jul; 88(13):8955-8968. PubMed ID: 37294694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Unified Mechanism to Account for Manganese- or Ruthenium-Catalyzed Nitrile α-Olefinations by Primary or Secondary Alcohols: A DFT Mechanistic Study.
    Lu Y; Zhao R; Guo J; Liu Z; Menberu W; Wang ZX
    Chemistry; 2019 Mar; 25(15):3939-3949. PubMed ID: 30623497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accessing Polysubstituted Quinazolines via Nickel Catalyzed Acceptorless Dehydrogenative Coupling.
    Parua S; Sikari R; Sinha S; Chakraborty G; Mondal R; Paul ND
    J Org Chem; 2018 Sep; 83(18):11154-11166. PubMed ID: 30091595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic Acceptorless Dehydrogenation of Amino Alcohols and 2-Hydroxybenzyl Alcohols for Annulation Reaction under Neutral Conditions.
    Pandey AM; Digrawal NK; Mohanta N; Jamdade AB; Chaudhari MB; Bisht GS; Gnanaprakasam B
    J Org Chem; 2021 Jul; 86(13):8805-8828. PubMed ID: 34151556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of imines from the coupling reaction of alcohols and amines catalyzed by phosphine-free cobalt(II) complexes.
    Mahato J; Bera PS; Saha TK
    Org Biomol Chem; 2024 Jun; 22(22):4528-4535. PubMed ID: 38752768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.