These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 33107905)

  • 1. A representation model for biological entities by fusing structured axioms with unstructured texts.
    Lou P; Dong Y; Jimeno Yepes A; Li C
    Bioinformatics; 2021 May; 37(8):1156-1163. PubMed ID: 33107905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formal axioms in biomedical ontologies improve analysis and interpretation of associated data.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2020 Apr; 36(7):2229-2236. PubMed ID: 31821406
    [TBL] [Abstract][Full Text] [Related]  

  • 3. OPA2Vec: combining formal and informal content of biomedical ontologies to improve similarity-based prediction.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2019 Jun; 35(12):2133-2140. PubMed ID: 30407490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Onto2Vec: joint vector-based representation of biological entities and their ontology-based annotations.
    Smaili FZ; Gao X; Hoehndorf R
    Bioinformatics; 2018 Jul; 34(13):i52-i60. PubMed ID: 29949999
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mOWL: Python library for machine learning with biomedical ontologies.
    Zhapa-Camacho F; Kulmanov M; Hoehndorf R
    Bioinformatics; 2023 Jan; 39(1):. PubMed ID: 36534832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. LBERT: Lexically aware Transformer-based Bidirectional Encoder Representation model for learning universal bio-entity relations.
    Warikoo N; Chang YC; Hsu WL
    Bioinformatics; 2021 Apr; 37(3):404-412. PubMed ID: 32810217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuro-symbolic representation learning on biological knowledge graphs.
    Alshahrani M; Khan MA; Maddouri O; Kinjo AR; Queralt-Rosinach N; Hoehndorf R
    Bioinformatics; 2017 Sep; 33(17):2723-2730. PubMed ID: 28449114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploiting disjointness axioms to improve semantic similarity measures.
    Ferreira JD; Hastings J; Couto FM
    Bioinformatics; 2013 Nov; 29(21):2781-7. PubMed ID: 24002110
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Path-based knowledge reasoning with textual semantic information for medical knowledge graph completion.
    Lan Y; He S; Liu K; Zeng X; Liu S; Zhao J
    BMC Med Inform Decis Mak; 2021 Nov; 21(Suppl 9):335. PubMed ID: 34844576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-semantic relation extraction with attention-based external knowledge reinforcement.
    Li Z; Lian Y; Ma X; Zhang X; Li C
    BMC Bioinformatics; 2020 May; 21(1):213. PubMed ID: 32448122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting candidate genes from phenotypes, functions and anatomical site of expression.
    Chen J; Althagafi A; Hoehndorf R
    Bioinformatics; 2021 May; 37(6):853-860. PubMed ID: 33051643
    [TBL] [Abstract][Full Text] [Related]  

  • 12. STonKGs: a sophisticated transformer trained on biomedical text and knowledge graphs.
    Balabin H; Hoyt CT; Birkenbihl C; Gyori BM; Bachman J; Kodamullil AT; Plöger PG; Hofmann-Apitius M; Domingo-Fernández D
    Bioinformatics; 2022 Mar; 38(6):1648-1656. PubMed ID: 34986221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. From lexical regularities to axiomatic patterns for the quality assurance of biomedical terminologies and ontologies.
    van Damme P; Quesada-Martínez M; Cornet R; Fernández-Breis JT
    J Biomed Inform; 2018 Aug; 84():59-74. PubMed ID: 29908358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large scale biomedical texts classification: a kNN and an ESA-based approaches.
    Dramé K; Mougin F; Diallo G
    J Biomed Semantics; 2016 Jun; 7():40. PubMed ID: 27312781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine-Tuning Word Embeddings for Hierarchical Representation of Data Using a Corpus and a Knowledge Base for Various Machine Learning Applications.
    Alsuhaibani M; Bollegala D
    Comput Math Methods Med; 2021; 2021():9761163. PubMed ID: 34824601
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DeepGOZero: improving protein function prediction from sequence and zero-shot learning based on ontology axioms.
    Kulmanov M; Hoehndorf R
    Bioinformatics; 2022 Jun; 38(Suppl 1):i238-i245. PubMed ID: 35758802
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automated ontology generation framework powered by linked biomedical ontologies for disease-drug domain.
    Alobaidi M; Malik KM; Hussain M
    Comput Methods Programs Biomed; 2018 Oct; 165():117-128. PubMed ID: 30337066
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Approach for Learning Expressive Ontologies in Medical Domain.
    Rios-Alvarado AB; Lopez-Arevalo I; Tello-Leal E; Sosa-Sosa VJ
    J Med Syst; 2015 Aug; 39(8):75. PubMed ID: 26077127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Semantic similarity and machine learning with ontologies.
    Kulmanov M; Smaili FZ; Gao X; Hoehndorf R
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33049044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FAIR data representation in times of eScience: a comparison of instance-based and class-based semantic representations of empirical data using phenotype descriptions as example.
    Vogt L
    J Biomed Semantics; 2021 Nov; 12(1):20. PubMed ID: 34823588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.