These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 33108037)

  • 1. Phosphorus recovery from wastewater using pyridine-based ion-exchange resins: Role of impregnated iron oxide nanoparticles and preloaded Lewis acid (Cu
    Beaudry JW; Sengupta S
    Water Environ Res; 2021 May; 93(5):774-786. PubMed ID: 33108037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ion exchange nutrient recovery from anaerobic membrane bioreactor permeate.
    Mullen P; Venkiteshwaran K; Zitomer DH; Mayer BK
    Water Environ Res; 2019 Jul; 91(7):606-615. PubMed ID: 30737846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective removal of phosphorus from wastewater combined with its recovery as a solid-phase fertilizer.
    Sengupta S; Pandit A
    Water Res; 2011 May; 45(11):3318-30. PubMed ID: 21531433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removal and recovery of phosphate from municipal wastewaters using a polymeric anion exchanger bound with hydrated ferric oxide nanoparticles.
    Martin BD; Parsons SA; Jefferson B
    Water Sci Technol; 2009; 60(10):2637-45. PubMed ID: 19923770
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of polymer-based nanosized hydrated ferric oxides (HFOs) for enhanced phosphate removal from waste effluents.
    Pan B; Wu J; Pan B; Lv L; Zhang W; Xiao L; Wang X; Tao X; Zheng S
    Water Res; 2009 Sep; 43(17):4421-9. PubMed ID: 19615711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Struvite-based phosphorus recovery from the concentrated bioeffluent by using HFO nanocomposite adsorption: Effect of solution chemistry.
    Zhang Y; Zhang W; Pan B
    Chemosphere; 2015 Dec; 141():227-34. PubMed ID: 26246192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electro-assisted regeneration of pH-sensitive ion exchangers for sustainable phosphate removal and recovery.
    Dong H; Wei L; Tarpeh WA
    Water Res; 2020 Oct; 184():116167. PubMed ID: 32682079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid anion exchanger for trace phosphate removal from water and wastewater.
    Blaney LM; Cinar S; SenGupta AK
    Water Res; 2007 Apr; 41(7):1603-13. PubMed ID: 17306856
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferable removal of phosphate from water using hydrous zirconium oxide-based nanocomposite of high stability.
    Chen L; Zhao X; Pan B; Zhang W; Hua M; Lv L; Zhang W
    J Hazard Mater; 2015 Mar; 284():35-42. PubMed ID: 25463215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced phosphate removal from water by hydrated neodymium oxide-based nanocomposite: Performance, mechanism, and validation.
    Chen N; Ni C; Wu S; Chen D; Pan B
    J Colloid Interface Sci; 2023 Mar; 633():866-875. PubMed ID: 36495808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus recovery as struvite from eutropic waters by XDA-7 resin.
    Li H; Ye Z; Lin Y; Wang F
    Water Sci Technol; 2012; 65(12):2091-7. PubMed ID: 22643401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient adsorption of phosphorus by macroscopic MOF/chitosan composites and preliminary investigation of subsequent phosphorus recovery through electrochemically-driven struvite precipitation.
    Luo H; Liu B; Zhang M; Wei C; Long Q; Pan S; Zeng J; Rong H
    Int J Biol Macromol; 2024 Feb; 257(Pt 2):128707. PubMed ID: 38101663
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorptive selenite removal from water using a nano-hydrated ferric oxides (HFOs)/polymer hybrid adsorbent.
    Pan B; Xiao L; Nie G; Pan B; Wu J; Lv L; Zhang W; Zheng S
    J Environ Monit; 2010 Jan; 12(1):305-10. PubMed ID: 20082026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling phosphorus removal and recovery from anaerobic digester supernatant through struvite crystallization in a fluidized bed reactor.
    Rahaman MS; Mavinic DS; Meikleham A; Ellis N
    Water Res; 2014 Mar; 51():1-10. PubMed ID: 24384559
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous removal of As(V) and Cr(VI) from water by macroporous anion exchanger supported nanoscale hydrous ferric oxide composite.
    Hua M; Yang B; Shan C; Zhang W; He S; Lv L; Pan B
    Chemosphere; 2017 Mar; 171():126-133. PubMed ID: 28012384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of saline water ionic strength on phosphorus recovery from synthetic swine wastewater.
    Zhang Z; Li B; Wicaksana F; Yu W; Young B
    J Environ Sci (China); 2022 Mar; 113():81-91. PubMed ID: 34963552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regeneration and modelling of a phosphorous removal and recovery hybrid ion exchange resin after long term operation with municipal wastewater.
    Pinelli D; Bovina S; Rubertelli G; Martinelli A; Guida S; Soares A; Frascari D
    Chemosphere; 2022 Jan; 286(Pt 1):131581. PubMed ID: 34325265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying the performance of a hybrid anion exchanger/adsorbent for phosphorus removal using mass spectrometry coupled with batch kinetic trials.
    Martin BD; De Kock L; Gallot M; Guery E; Stanowski S; MacAdam J; McAdam EJ; Parsons SA; Jefferson B
    Environ Technol; 2018 Sep; 39(18):2304-2314. PubMed ID: 28696165
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on phosphate removal from aqueous solutions using magnesium-ammonium- and zirconium-modified zeolites: equilibrium, kinetic, and fixed-bed column study.
    Marzi M; Kazemian H; Bradshaw C
    Environ Monit Assess; 2023 Jun; 195(7):826. PubMed ID: 37294457
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cooperation of ferrous ions and hydrated ferric oxide for advanced phosphate removal over a wide pH range: Mechanism and kinetics.
    Wang X; Li Y; Wen X; Liu L; Zhang L; Long M
    Water Res; 2024 Feb; 249():120969. PubMed ID: 38086202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.