These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 33108051)
1. Proteomic Characterization of the Pseudomonas sp. Strain phDV1 Response to Monocyclic Aromatic Compounds. Lyratzakis A; Valsamidis G; Kanavaki I; Nikolaki A; Rupprecht F; Langer JD; Tsiotis G Proteomics; 2021 Jan; 21(2):e2000003. PubMed ID: 33108051 [TBL] [Abstract][Full Text] [Related]
2. Polyhydroxyalkanoate (PHA) Production in Kanavaki I; Drakonaki A; Geladas ED; Spyros A; Xie H; Tsiotis G Microorganisms; 2021 Jul; 9(8):. PubMed ID: 34442715 [No Abstract] [Full Text] [Related]
3. Identification of inducible protein complexes in the phenol degrader Pseudomonas sp. strain phDV1 by blue native gel electrophoresis and mass spectrometry. Tsirogianni E; Aivaliotis M; Papasotiriou DG; Karas M; Tsiotis G Amino Acids; 2006 Feb; 30(1):63-72. PubMed ID: 16003498 [TBL] [Abstract][Full Text] [Related]
4. Comparison of the membrane subproteomes during growth of a new pseudomonas strain on lysogeny broth medium, glucose, and phenol. Papasotiriou DG; Markoutsa S; Meyer B; Papadioti A; Karas M; Tsiotis G J Proteome Res; 2008 Oct; 7(10):4278-88. PubMed ID: 18707154 [TBL] [Abstract][Full Text] [Related]
5. Production of Polyhydroxybutyrate by Genetically Modified Drakonaki A; Mathioudaki E; Geladas ED; Konsolaki E; Vitsaxakis N; Chaniotakis N; Xie H; Tsiotis G Microorganisms; 2023 Jun; 11(6):. PubMed ID: 37375094 [No Abstract] [Full Text] [Related]
6. Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin. Simon O; Klaiber I; Huber A; Pfannstiel J J Proteomics; 2014 Sep; 109():212-27. PubMed ID: 25026441 [TBL] [Abstract][Full Text] [Related]
7. Proteome analysis of Pseudomonas sp. K82 biodegradation pathways. Kim SI; Kim JY; Yun SH; Kim JH; Leem SH; Lee C Proteomics; 2004 Nov; 4(11):3610-21. PubMed ID: 15449373 [TBL] [Abstract][Full Text] [Related]
8. Simultaneous degradation of atrazine and phenol by Pseudomonas sp. strain ADP: effects of toxicity and adaptation. Neumann G; Teras R; Monson L; Kivisaar M; Schauer F; Heipieper HJ Appl Environ Microbiol; 2004 Apr; 70(4):1907-12. PubMed ID: 15066779 [TBL] [Abstract][Full Text] [Related]
9. Mass spectrometric mapping of the enzymes involved in the phenol degradation of an indigenous soil pseudomonad. Tsirogianni I; Aivaliotis M; Karas M; Tsiotis G Biochim Biophys Acta; 2004 Jul; 1700(1):117-23. PubMed ID: 15210131 [TBL] [Abstract][Full Text] [Related]
10. Mechanistic insights into the global response to phenol in the phenol-biodegrading strain Pseudomonas sp. M1 revealed by quantitative proteomics. Santos PM; Roma V; Benndorf D; von Bergen M; Harms H; Sá-Correia I OMICS; 2007; 11(3):233-51. PubMed ID: 17883337 [TBL] [Abstract][Full Text] [Related]
11. A comparative intracellular proteomic profiling of Pseudomonas aeruginosa strain ASP-53 grown on pyrene or glucose as sole source of carbon and identification of some key enzymes of pyrene biodegradation pathway. Mukherjee AK; Bhagowati P; Biswa BB; Chanda A; Kalita B J Proteomics; 2017 Sep; 167():25-35. PubMed ID: 28774858 [TBL] [Abstract][Full Text] [Related]
12. Proteomic characterization of the Pseudomonas putida KT2440 global response to a monocyclic aromatic compound by iTRAQ analysis and 1DE-MudPIT. Yun SH; Park GW; Kim JY; Kwon SO; Choi CW; Leem SH; Kwon KH; Yoo JS; Lee C; Kim S; Kim SI J Proteomics; 2011 May; 74(5):620-8. PubMed ID: 21315195 [TBL] [Abstract][Full Text] [Related]
13. Enzymes involved in the anaerobic degradation of phenol by the sulfate-reducing bacterium Desulfatiglans anilini. Xie X; Müller N BMC Microbiol; 2018 Aug; 18(1):93. PubMed ID: 30157755 [TBL] [Abstract][Full Text] [Related]
14. Analysis of aromatic catabolic pathways in Pseudomonas putida KT 2440 using a combined proteomic approach: 2-DE/MS and cleavable isotope-coded affinity tag analysis. Kim YH; Cho K; Yun SH; Kim JY; Kwon KH; Yoo JS; Kim SI Proteomics; 2006 Feb; 6(4):1301-18. PubMed ID: 16470664 [TBL] [Abstract][Full Text] [Related]
15. Comparative proteomes of Corynebacterium glutamicum grown on aromatic compounds revealed novel proteins involved in aromatic degradation and a clear link between aromatic catabolism and gluconeogenesis via fructose-1,6-bisphosphatase. Qi SW; Chaudhry MT; Zhang Y; Meng B; Huang Y; Zhao KX; Poetsch A; Jiang CY; Liu S; Liu SJ Proteomics; 2007 Oct; 7(20):3775-87. PubMed ID: 17880007 [TBL] [Abstract][Full Text] [Related]
16. Regulation of phenol degradation in Pseudomonas putida. Janke D; Pohl R; Fritsche W Z Allg Mikrobiol; 1981; 21(4):295-303. PubMed ID: 7293241 [TBL] [Abstract][Full Text] [Related]
17. Degradation of aromatic compounds by Acinetobacter radioresistens S13: growth characteristics on single substrates and mixtures. Mazzoli R; Pessione E; Giuffrida MG; Fattori P; Barello C; Giunta C; Lindley ND Arch Microbiol; 2007 Jul; 188(1):55-68. PubMed ID: 17483933 [TBL] [Abstract][Full Text] [Related]