BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 33108069)

  • 1. CIM6P/IGF-2 Receptor Ligands Reverse Deficits in Angelman Syndrome Model Mice.
    Cruz E; Descalzi G; Steinmetz A; Scharfman HE; Katzman A; Alberini CM
    Autism Res; 2021 Jan; 14(1):29-45. PubMed ID: 33108069
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome.
    Berg EL; Petkova SP; Born HA; Adhikari A; Anderson AE; Silverman JL
    Mol Autism; 2021 Sep; 12(1):59. PubMed ID: 34526125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A role for CIM6P/IGF2 receptor in memory consolidation and enhancement.
    Yu XW; Pandey K; Katzman AC; Alberini CM
    Elife; 2020 May; 9():. PubMed ID: 32369018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Insulin-Like Growth Factor II Targets the mTOR Pathway to Reverse Autism-Like Phenotypes in Mice.
    Steinmetz AB; Stern SA; Kohtz AS; Descalzi G; Alberini CM
    J Neurosci; 2018 Jan; 38(4):1015-1029. PubMed ID: 29217683
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of a TrkB agonist on spatial and motor learning in the
    Schultz MN; Crawley JN
    Learn Mem; 2020 Sep; 27(9):346-354. PubMed ID: 32817301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibition of insulin-like growth factor II (IGF-II)-dependent cell growth by multidentate pentamannosyl 6-phosphate-based ligands targeting the mannose 6-phosphate/IGF-II receptor.
    Zavorka ME; Connelly CM; Grosely R; MacDonald RG
    Oncotarget; 2016 Sep; 7(38):62386-62410. PubMed ID: 27694692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel
    Sonzogni M; Wallaard I; Santos SS; Kingma J; du Mee D; van Woerden GM; Elgersma Y
    Mol Autism; 2018; 9():47. PubMed ID: 30220990
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation and Characterization of a Novel Angelman Syndrome Mouse Model with a Full Deletion of the
    Syding LA; Kubik-Zahorodna A; Nickl P; Novosadova V; Kopkanova J; Kasparek P; Prochazka J; Sedlacek R
    Cells; 2022 Sep; 11(18):. PubMed ID: 36139390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional role of cation-independent mannose 6-phosphate/insulin-like growth factor II receptor in cell adhesion and proliferation of a human myeloma cell line OPM-2.
    Nishiura T; Karasuno T; Yoshida H; Nakao H; Ogawa M; Horikawa Y; Yoshimura M; Okajima Y; Kanakura Y; Kanayama Y; Matsuzawa Y
    Blood; 1996 Nov; 88(9):3546-54. PubMed ID: 8896422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait as a quantitative translational outcome measure in Angelman syndrome.
    Petkova SP; Adhikari A; Berg EL; Fenton TA; Duis J; Silverman JL
    Autism Res; 2022 May; 15(5):821-833. PubMed ID: 35274462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Behavioral deficits in an Angelman syndrome model: effects of genetic background and age.
    Huang HS; Burns AJ; Nonneman RJ; Baker LK; Riddick NV; Nikolova VD; Riday TT; Yashiro K; Philpot BD; Moy SS
    Behav Brain Res; 2013 Apr; 243():79-90. PubMed ID: 23295389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hypersociability in the Angelman syndrome mouse model.
    Stoppel DC; Anderson MP
    Exp Neurol; 2017 Jul; 293():137-143. PubMed ID: 28411125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The rate of internalization of the mannose 6-phosphate/insulin-like growth factor II receptor is enhanced by multivalent ligand binding.
    York SJ; Arneson LS; Gregory WT; Dahms NM; Kornfeld S
    J Biol Chem; 1999 Jan; 274(2):1164-71. PubMed ID: 9873065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mannose 6-phosphate increases the affinity of its cation-independent receptor for insulin-like growth factor II by displacing inhibitory endogenous ligands.
    Polychronakos C; Guyda HJ; Posner BI
    Biochem Biophys Res Commun; 1988 Dec; 157(2):632-8. PubMed ID: 2974283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of a Novel Rat Model of Angelman Syndrome with a Complete Ube3a Gene Deletion.
    Dodge A; Peters MM; Greene HE; Dietrick C; Botelho R; Chung D; Willman J; Nenninger AW; Ciarlone S; Kamath SG; Houdek P; Sumová A; Anderson AE; Dindot SV; Berg EL; O'Geen H; Segal DJ; Silverman JL; Weeber EJ; Nash KR
    Autism Res; 2020 Mar; 13(3):397-409. PubMed ID: 31961493
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insulin-Like Growth Factor-II/Cation-Independent Mannose 6-Phosphate Receptor in Neurodegenerative Diseases.
    Wang Y; MacDonald RG; Thinakaran G; Kar S
    Mol Neurobiol; 2017 May; 54(4):2636-2658. PubMed ID: 26993302
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mitochondrial Superoxide Contributes to Hippocampal Synaptic Dysfunction and Memory Deficits in Angelman Syndrome Model Mice.
    Santini E; Turner KL; Ramaraj AB; Murphy MP; Klann E; Kaphzan H
    J Neurosci; 2015 Dec; 35(49):16213-20. PubMed ID: 26658871
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral Evaluation of Angelman Syndrome Mice at Older Ages.
    Dutta R; Crawley JN
    Neuroscience; 2020 Oct; 445():163-171. PubMed ID: 31730795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seizure-like activity in a juvenile Angelman syndrome mouse model is attenuated by reducing Arc expression.
    Mandel-Brehm C; Salogiannis J; Dhamne SC; Rotenberg A; Greenberg ME
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):5129-34. PubMed ID: 25848016
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolated compared to membrane-bound receptors exhibit altered insulin/IGF interaction.
    Nedić O; Masnikosa R
    Biochemistry (Mosc); 2009 Jan; 74(1):29-35. PubMed ID: 19232045
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.