BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 33108120)

  • 21. Protection by fungal starters against growth and secondary metabolite production of fungal spoilers of cheese.
    Nielsen MS; Frisvad JC; Nielsen PV
    Int J Food Microbiol; 1998 Jun; 42(1-2):91-9. PubMed ID: 9706802
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biosynthetic gene clusters for relevant secondary metabolites produced by Penicillium roqueforti in blue cheeses.
    García-Estrada C; Martín JF
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8303-13. PubMed ID: 27554495
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolomics analyses of the combined effects of lactic acid bacteria and Penicillium camemberti on the generation of volatile compounds in model mold-surface-ripened cheeses.
    Suzuki-Iwashima A; Matsuura H; Iwasawa A; Shiota M
    J Biosci Bioeng; 2020 Mar; 129(3):333-347. PubMed ID: 31611057
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Sex in cheese: evidence for sexuality in the fungus Penicillium roqueforti.
    Ropars J; Dupont J; Fontanillas E; Rodríguez de la Vega RC; Malagnac F; Coton M; Giraud T; López-Villavicencio M
    PLoS One; 2012; 7(11):e49665. PubMed ID: 23185400
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The inhibitory effect of Penicillium camemberti and Geotruchum candidum on the associated funga of white mould cheese.
    Decker M; Nielsen PV
    Int J Food Microbiol; 2005 Sep; 104(1):51-60. PubMed ID: 16083983
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Induction of sexual reproduction and genetic diversity in the cheese fungus Penicillium roqueforti.
    Ropars J; López-Villavicencio M; Dupont J; Snirc A; Gillot G; Coton M; Jany JL; Coton E; Giraud T
    Evol Appl; 2014 Apr; 7(4):433-41. PubMed ID: 24822078
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Domestication in dry-cured meat
    Lo YC; Bruxaux J; Rodríguez de la Vega RC; O'Donnell S; Snirc A; Coton M; Le Piver M; Le Prieur S; Roueyre D; Dupont J; Houbraken J; Debuchy R; Ropars J; Giraud T; Branca A
    Evol Appl; 2023 Sep; 16(9):1637-1660. PubMed ID: 37752962
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cyclopiazonic acid in soft-ripened and blue cheeses marketed in the USA.
    Maragos CM; Probyn C; Proctor RH; Sieve KK
    Food Addit Contam Part B Surveill; 2023 Mar; 16(1):14-23. PubMed ID: 35997046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microsatellite loci to recognize species for the cheese starter and contaminating strains associated with cheese manufacturing.
    Giraud F; Giraud T; Aguileta G; Fournier E; Samson R; Cruaud C; Lacoste S; Ropars J; Tellier A; Dupont J
    Int J Food Microbiol; 2010 Feb; 137(2-3):204-13. PubMed ID: 20031244
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional diversity within the Penicillium roqueforti species.
    Gillot G; Jany JL; Poirier E; Maillard MB; Debaets S; Thierry A; Coton E; Coton M
    Int J Food Microbiol; 2017 Jan; 241():141-150. PubMed ID: 27771579
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proteolysis in Irish farmhouse Camembert cheese during ripening.
    Mane A; McSweeney PLH
    J Food Biochem; 2020 Jan; 44(1):e13101. PubMed ID: 31782198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A taxonomic and ecological overview of cheese fungi.
    Ropars J; Cruaud C; Lacoste S; Dupont J
    Int J Food Microbiol; 2012 Apr; 155(3):199-210. PubMed ID: 22381457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled production of Camembert-type cheeses. Part I: Microbiological and physicochemical evolutions.
    Leclercq-Perlat MN; Buono F; Lambert D; Latrille E; Spinnler HE; Corrieu G
    J Dairy Res; 2004 Aug; 71(3):346-54. PubMed ID: 15354582
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Examination of the taxonomic position of Penicillium strains used in blue cheese production based on the partial sequence of β-tubulin.
    Ogawa Y; Hirose D; Akiyama A; Ichinoe M
    Shokuhin Eiseigaku Zasshi; 2014; 55(3):157-61. PubMed ID: 24990763
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A natural short pathway synthesizes roquefortine C but not meleagrin in three different Penicillium roqueforti strains.
    Kosalková K; Domínguez-Santos R; Coton M; Coton E; García-Estrada C; Liras P; Martín JF
    Appl Microbiol Biotechnol; 2015 Sep; 99(18):7601-12. PubMed ID: 25998659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toxins of Penicillium Species Used in Cheese Manufacture.
    Scott PM
    J Food Prot; 1981 Sep; 44(9):702-710. PubMed ID: 30856725
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-pressure processing decelerates lipolysis and formation of volatile compounds in ovine milk blue-veined cheese.
    Calzada J; Del Olmo A; Picon A; Gaya P; Nuñez M
    J Dairy Sci; 2013; 96(12):7500-10. PubMed ID: 24140328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tyrosine Induced Metabolome Alterations of
    Hammerl R; Frank O; Dietz M; Hirschmann J; Hofmann T
    J Agric Food Chem; 2019 Aug; 67(31):8500-8509. PubMed ID: 31298534
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Penicillium camemberti and Penicillium roqueforti enhance the growth and survival of Shiga toxin-producing Escherichia coli O157 under mild acidic conditions.
    Lee K; Watanabe M; Sugita-Konishi Y; Hara-Kudo Y; Kumagai S
    J Food Sci; 2012 Feb; 77(2):M102-7. PubMed ID: 22251153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic diversity and population structure of Penicillium roqueforti isolates from Turkish blue cheeses.
    Kirtil HE; Orakci A; Arici M; Metin B
    Int J Food Microbiol; 2024 Jun; 421():110801. PubMed ID: 38924974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.