These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33108301)

  • 1. Multimodal Data Fusion of Electromyography and Acoustic Signals for Thai Syllable Recognition.
    Jong NS; de Herrera AGS; Phukpattaranont P
    IEEE J Biomed Health Inform; 2021 Jun; 25(6):1997-2006. PubMed ID: 33108301
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel silent speech recognition approach based on parallel inception convolutional neural network and Mel frequency spectral coefficient.
    Wu J; Zhang Y; Xie L; Yan Y; Zhang X; Liu S; An X; Yin E; Ming D
    Front Neurorobot; 2022; 16():971446. PubMed ID: 36119717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sEMG-based technology for silent voice recognition.
    Li W; Yuan J; Zhang L; Cui J; Wang X; Li H
    Comput Biol Med; 2023 Jan; 152():106336. PubMed ID: 36473341
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Feature fusion of electrocardiogram and surface electromyography for estimating the fatigue states during lower limb rehabilitation].
    Yuan Y; Cao D; Li C; Liu C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2020 Dec; 37(6):1056-1064. PubMed ID: 33369345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of sEMG sensors and algorithms for silent speech recognition.
    Meltzner GS; Heaton JT; Deng Y; De Luca G; Roy SH; Kline JC
    J Neural Eng; 2018 Aug; 15(4):046031. PubMed ID: 29855428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Research on exercise fatigue estimation method of Pilates rehabilitation based on ECG and sEMG feature fusion.
    Li D; Chen C
    BMC Med Inform Decis Mak; 2022 Mar; 22(1):67. PubMed ID: 35303877
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Automated Dysarthria Severity Classification: A Study on Acoustic Features and Deep Learning Techniques.
    Joshy AA; Rajan R
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1147-1157. PubMed ID: 35452390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myoelectric signal classification for phoneme-based speech recognition.
    Scheme EJ; Hudgins B; Parker PA
    IEEE Trans Biomed Eng; 2007 Apr; 54(4):694-9. PubMed ID: 17405376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards optimizing electrode configurations for silent speech recognition based on high-density surface electromyography.
    Zhu M; Zhang H; Wang X; Wang X; Yang Z; Wang C; Samuel OW; Chen S; Li G
    J Neural Eng; 2021 Jan; 18(1):. PubMed ID: 33181497
    [No Abstract]   [Full Text] [Related]  

  • 10. A cepstrum analysis-based classification method for hand movement surface EMG signals.
    Yavuz E; Eyupoglu C
    Med Biol Eng Comput; 2019 Oct; 57(10):2179-2201. PubMed ID: 31388900
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Pilot Study on the Performance of Time-Domain Features in Speech Recognition based on high-density sEMG.
    Wang X; Zhu M; Samuel OW; Yang Z; Lu L; Cai X; Wang X; Chen S; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():19-22. PubMed ID: 34891229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-feature gait recognition with DNN based on sEMG signals.
    Yao T; Gao F; Zhang Q; Ma Y
    Math Biosci Eng; 2021 Apr; 18(4):3521-3542. PubMed ID: 34198399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of acoustic feature parameters using myoelectric signals.
    Lee KS
    IEEE Trans Biomed Eng; 2010 Jul; 57(7):1587-95. PubMed ID: 20172775
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parallel-Inception CNN Approach for Facial sEMG based Silent Speech Recognition.
    Wu J; Zhao T; Zhang Y; Xie L; Yan Y; Yin E
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():554-557. PubMed ID: 34891354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of feature evaluation criteria for speech recognition based on electromyography.
    Srisuwan N; Phukpattaranont P; Limsakul C
    Med Biol Eng Comput; 2018 Jun; 56(6):1041-1051. PubMed ID: 29134413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effective recognition of human lower limb jump locomotion phases based on multi-sensor information fusion and machine learning.
    Lu Y; Wang H; Hu F; Zhou B; Xi H
    Med Biol Eng Comput; 2021 Apr; 59(4):883-899. PubMed ID: 33745104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effects of Channel Number on Classification Performance for sEMG-based Speech Recognition.
    Wang X; Zhu M; Cui H; Yang Z; Wang X; Zhang H; Wang C; Deng H; Chen S; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3102-3105. PubMed ID: 33018661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Syllable-based speech recognition using EMG.
    Lopez-Larraz E; Mozos OM; Antelis JM; Minguez J
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():4699-702. PubMed ID: 21096011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiexpert automatic speech recognition using acoustic and myoelectric signals.
    Chan AD; Englehart KB; Hudgins B; Lovely DF
    IEEE Trans Biomed Eng; 2006 Apr; 53(4):676-85. PubMed ID: 16602574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate recognition of lower limb ambulation mode based on surface electromyography and motion data using machine learning.
    Zhou B; Wang H; Hu F; Feng N; Xi H; Zhang Z; Tang H
    Comput Methods Programs Biomed; 2020 Sep; 193():105486. PubMed ID: 32402846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.