These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 33108319)

  • 1. Silk-based microcarriers: current developments and future perspectives.
    Veiga A; Castro F; Rocha F; Oliveira A
    IET Nanobiotechnol; 2020 Oct; 14(8):645-653. PubMed ID: 33108319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications.
    Asadpour S; Kargozar S; Moradi L; Ai A; Nosrati H; Ai J
    Int J Biol Macromol; 2020 Jul; 154():1285-1294. PubMed ID: 31733251
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of the New-Type Vascular Endothelial Growth Factor-Silk Fibroin-Chitosan Three-Dimensional Scaffolds for Bone Tissue Engineering and In Vitro Evaluation.
    Tong S; Xu DP; Liu ZM; Du Y; Wang XK
    J Craniofac Surg; 2016 Mar; 27(2):509-15. PubMed ID: 26890455
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Recent progress on silk fibroin as tissue engineering biomaterials].
    Wang H; Li M
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2008 Feb; 22(2):192-5. PubMed ID: 18365617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonmulberry silk fibroin-based biomaterials: Impact on cell behavior regulation and tissue regeneration.
    Zou S; Yao X; Shao H; Reis RL; Kundu SC; Zhang Y
    Acta Biomater; 2022 Nov; 153():68-84. PubMed ID: 36113722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silk scaffolds connected with different naturally occurring biomaterials for prostate cancer cell cultivation in 3D.
    Bäcker A; Erhardt O; Wietbrock L; Schel N; Göppert B; Dirschka M; Abaffy P; Sollich T; Cecilia A; Gruhl FJ
    Biopolymers; 2017 Feb; 107(2):70-79. PubMed ID: 27696348
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chitosan silk-based three-dimensional scaffolds containing gentamicin-encapsulated calcium alginate beads for drug administration and blood compatibility.
    Mehta AS; Singh BK; Singh N; Archana D; Snigdha K; Harniman R; Rahatekar SS; Tewari RP; Dutta PK
    J Biomater Appl; 2015 Apr; 29(9):1314-25. PubMed ID: 25492055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Natural silk nanofibrils as reinforcements for the preparation of chitosan-based bionanocomposites.
    Li L; Yang H; Li X; Yan S; Xu A; You R; Zhang Q
    Carbohydr Polym; 2021 Feb; 253():117214. PubMed ID: 33278979
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring the properties and functions of phosphate/silk/Ag/chitosan scaffolds.
    Abdel-Fattah WI; Sallam AS; Diab AM; Ali GW
    Mater Sci Eng C Mater Biol Appl; 2015 Sep; 54():158-68. PubMed ID: 26046279
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stem cell-based tissue engineering with silk biomaterials.
    Wang Y; Kim HJ; Vunjak-Novakovic G; Kaplan DL
    Biomaterials; 2006 Dec; 27(36):6064-82. PubMed ID: 16890988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and Application of an Advanced Biomedical Material-Silk Sericin.
    Wang J; Liu H; Shi X; Qin S; Liu J; Lv Q; Liu J; Li Q; Wang Z; Wang L
    Adv Mater; 2024 Jun; 36(23):e2311593. PubMed ID: 38386199
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silk fibroin/chitosan scaffold: preparation, characterization, and culture with HepG2 cell.
    She Z; Jin C; Huang Z; Zhang B; Feng Q; Xu Y
    J Mater Sci Mater Med; 2008 Dec; 19(12):3545-53. PubMed ID: 18622765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of Composite Scaffold Containing Silk Fibroin, Chitosan, and Gelatin for 3D Cell Culture and Bone Tissue Regeneration.
    Li J; Wang Q; Gu Y; Zhu Y; Chen L; Chen Y
    Med Sci Monit; 2017 Nov; 23():5311-5320. PubMed ID: 29114098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Silk fibroin for vascular regeneration.
    Wang D; Liu H; Fan Y
    Microsc Res Tech; 2017 Mar; 80(3):280-290. PubMed ID: 26097014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Endothelial and stem cell interactions on dielectrophoretically aligned fibrous silk fibroin-chitosan scaffolds.
    Gupta V; Davis G; Gordon A; Altman AM; Reece GP; Gascoyne PR; Mathur AB
    J Biomed Mater Res A; 2010 Aug; 94(2):515-23. PubMed ID: 20186770
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of processing on silk-based biomaterials: reproducibility and biocompatibility.
    Wray LS; Hu X; Gallego J; Georgakoudi I; Omenetto FG; Schmidt D; Kaplan DL
    J Biomed Mater Res B Appl Biomater; 2011 Oct; 99(1):89-101. PubMed ID: 21695778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of visco-elastic silk-chitosan microcomposite scaffolds on matrix deposition and biomechanical functionality for cartilage tissue engineering.
    Chameettachal S; Murab S; Vaid R; Midha S; Ghosh S
    J Tissue Eng Regen Med; 2017 Apr; 11(4):1212-1229. PubMed ID: 25846347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo degradation of three-dimensional silk fibroin scaffolds.
    Wang Y; Rudym DD; Walsh A; Abrahamsen L; Kim HJ; Kim HS; Kirker-Head C; Kaplan DL
    Biomaterials; 2008; 29(24-25):3415-28. PubMed ID: 18502501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling the cell adhesion property of silk films by graft polymerization.
    Dhyani V; Singh N
    ACS Appl Mater Interfaces; 2014 Apr; 6(7):5005-11. PubMed ID: 24650047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New skin tissue engineering scaffold with sulfated silk fibroin/chitosan/hydroxyapatite and its application.
    Peifen M; Mengyun L; Jinglong H; Danqian L; Yan T; Liwei X; Han Z; Jianlong D; Lingyan L; Guanghui Z; Zhiping W
    Biochem Biophys Res Commun; 2023 Jan; 640():117-124. PubMed ID: 36502627
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.