BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 33108322)

  • 1. Impartation of apatite-forming ability to chitosan nanofibres by using apatite nuclei.
    Adachi Y; Yabutsuka T; Takai S
    IET Nanobiotechnol; 2020 Oct; 14(8):668-672. PubMed ID: 33108322
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro bioactivity evaluation of titanium and niobium metals with different surface morphologies.
    Wang XJ; Li YC; Lin JG; Yamada Y; Hodgson PD; Wen CE
    Acta Biomater; 2008 Sep; 4(5):1530-5. PubMed ID: 18485846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synergistic effect of silanol group and calcium ion in chitosan membrane on apatite forming ability in simulated body fluid.
    Rhee SH; Lee SJ; Tanaka J
    J Biomater Sci Polym Ed; 2006; 17(3):357-68. PubMed ID: 16689020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bone-like apatite-forming ability and mechanical properties of poly(epsilon-caprolactone)/silica hybrid as a function of poly(epsilon-caprolactone) content.
    Rhee SH
    Biomaterials; 2004; 25(7-8):1167-75. PubMed ID: 14643590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical properties and apatite forming ability of TiO2 nanoparticles/high density polyethylene composite: Effect of filler content.
    Hashimoto M; Takadama H; Mizuno M; Kokubo T
    J Mater Sci Mater Med; 2007 Apr; 18(4):661-8. PubMed ID: 17546429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic growth of bone-like apatite via simulated body fluid on hydroxyethyl cellulose/polyvinyl alcohol electrospun nanofibers.
    Chahal S; Fathima SJ; Yusoff MB
    Biomed Mater Eng; 2014; 24(1):799-806. PubMed ID: 24211966
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth of a bonelike apatite on chitosan microparticles after a calcium silicate treatment.
    Leonor IB; Baran ET; Kawashita M; Reis RL; Kokubo T; Nakamura T
    Acta Biomater; 2008 Sep; 4(5):1349-59. PubMed ID: 18400572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of bone-like apatite layer on chitosan fiber mesh scaffolds by a biomimetic spraying process.
    Tuzlakoglu K; Reis RL
    J Mater Sci Mater Med; 2007 Jul; 18(7):1279-86. PubMed ID: 17431748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials.
    Zadpoor AA
    Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():134-43. PubMed ID: 24411361
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple surface modification of poly(epsilon-caprolactone) for apatite deposition from simulated body fluid.
    Oyane A; Uchida M; Choong C; Triffitt J; Jones J; Ito A
    Biomaterials; 2005 May; 26(15):2407-13. PubMed ID: 15585244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of phosphorous ion implantation on the mechanical properties and bioactivity of hydroxyapatite.
    Kobayashi S; Muramatsu T; Teranishi Y
    J Mater Sci Mater Med; 2015 Jan; 26(1):5351. PubMed ID: 25578705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Apatite-forming ability of alginate fibers treated with calcium hydroxide solution.
    Kokubo T; Hanakawa M; Kawashita M; Minoda M; Beppu T; Miyamoto T; Nakamura T
    J Mater Sci Mater Med; 2004 Sep; 15(9):1007-12. PubMed ID: 15448408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Apatite-forming ability of vinylphosphonic acid-based copolymer in simulated body fluid: effects of phosphate group content.
    Hamai R; Shirosaki Y; Miyazaki T
    J Mater Sci Mater Med; 2016 Oct; 27(10):152. PubMed ID: 27585911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The effect of a simulated inflammation procedure in simulated body fluid on bone-like apatite formation on porous HA/beta-TCP bioceramics].
    Ji J; Ran J; Gou L; Wang F; Sun L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):531-5. PubMed ID: 15357425
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone-like apatite layer formation on the new resin-modified glass-ionomer cement.
    Nourmohammadi J; Sadrnezhaad SK; Ghader AB
    J Mater Sci Mater Med; 2008 Dec; 19(12):3507-14. PubMed ID: 18622768
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro bioactivity of a biocomposite fabricated from HA and Ti powders by powder metallurgy method.
    Ning CQ; Zhou Y
    Biomaterials; 2002 Jul; 23(14):2909-15. PubMed ID: 12069332
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sol-gel modification of silicone to induce apatite-forming ability.
    Oyane A; Nakanishi K; Kim HM; Miyaji F; Kokubo T; Soga N; Nakamura T
    Biomaterials; 1999 Jan; 20(1):79-84. PubMed ID: 9916774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coating of bone-like apatite for development of bioactive materials for bone reconstruction.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    Biomed Mater; 2007 Dec; 2(4):R17-23. PubMed ID: 18458474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Apatite mineralization behavior on polyglutamic acid hydrogels in aqueous condition: effects of molecular weight.
    Miyazaki T; Mukai J; Ishida E; Ohtsuki C
    Biomed Mater Eng; 2013; 23(5):339-47. PubMed ID: 23988706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chitosan reinforced apatite-wollastonite coating by electrophoretic deposition on titanium implants.
    Sharma S; Soni VP; Bellare JR
    J Mater Sci Mater Med; 2009 Jul; 20(7):1427-36. PubMed ID: 19253015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.