These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 33108323)

  • 1. Impartation of hydroxyapatite formation ability to ultra-high molecular weight polyethylene by deposition of apatite nuclei.
    Yabutsuka T; Takai S
    IET Nanobiotechnol; 2020 Oct; 14(8):673-679. PubMed ID: 33108323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improvement of hydroxyapatite formation ability of titanium-based alloys by combination of acid etching and apatite nuclei precipitation.
    Yabutsuka T; Kidokoro Y; Takai S
    IET Nanobiotechnol; 2020 Oct; 14(8):688-694. PubMed ID: 33108325
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic apatite formation on Ultra-High Molecular Weight Polyethylene (UHMWPE) using modified biomimetic solution.
    Aparecida AH; Fook MV; Guastaldi AC
    J Mater Sci Mater Med; 2009 Jun; 20(6):1215-22. PubMed ID: 19132504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friction, wear, and tensile properties of vacuum hot pressing crosslinked UHMWPE/nano-HAP composites.
    Xiong L; Xiong D; Yang Y; Jin J
    J Biomed Mater Res B Appl Biomater; 2011 Jul; 98(1):127-38. PubMed ID: 21598380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials.
    Pino M; Stingelin N; Tanner KE
    Acta Biomater; 2008 Nov; 4(6):1827-36. PubMed ID: 18599372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of bioactive zirconium-tin alloy by combination of micropores formation and apatite nuclei deposition.
    Hashimoto N; Yabutsuka T; Takai S
    IET Nanobiotechnol; 2020 Oct; 14(8):701-706. PubMed ID: 33108327
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and characteristics of the apatite layer on plasma-sprayed hydroxyapatite coatings in simulated body fluid.
    Weng J; Liu Q; Wolke JG; Zhang X; de Groot K
    Biomaterials; 1997 Aug; 18(15):1027-35. PubMed ID: 9239464
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Advances in ultra high molecular weight polyethylene/hydroxyapatite composites for biomedical applications: A brief review.
    Macuvele DLP; Nones J; Matsinhe JV; Lima MM; Soares C; Fiori MA; Riella HG
    Mater Sci Eng C Mater Biol Appl; 2017 Jul; 76():1248-1262. PubMed ID: 28482493
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of pores formation process and oxygen plasma treatment to hydroxyapatite formation on bioactive PEEK prepared by incorporation of precursor of apatite.
    Yabutsuka T; Fukushima K; Hiruta T; Takai S; Yao T
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():349-358. PubMed ID: 28887983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Processing of hydroxyapatite reinforced ultrahigh molecular weight polyethylene for biomedical applications.
    Fang L; Leng Y; Gao P
    Biomaterials; 2005 Jun; 26(17):3471-8. PubMed ID: 15621236
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UHMWPE/HA biocomposite compatibilized by organophilic montmorillonite: An evaluation of the mechanical-tribological properties and its hemocompatibility and performance in simulated blood fluid.
    Macuvele DLP; Colla G; Cesca K; Ribeiro LFB; da Costa CE; Nones J; Breitenbach ER; Porto LM; Soares C; Fiori MA; Riella HG
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():411-423. PubMed ID: 30948077
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impartation of apatite-forming ability to chitosan nanofibres by using apatite nuclei.
    Adachi Y; Yabutsuka T; Takai S
    IET Nanobiotechnol; 2020 Oct; 14(8):668-672. PubMed ID: 33108322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Processing and mechanical properties of HA/UHMWPE nanocomposites.
    Fang L; Leng Y; Gao P
    Biomaterials; 2006 Jul; 27(20):3701-7. PubMed ID: 16564570
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-high molecular weight polyethylene bioactive composites with carbonated hydroxyapatite.
    Senra MR; Vieira Marques MF; de Holanda Saboya Souza D
    J Mech Behav Biomed Mater; 2020 Oct; 110():103938. PubMed ID: 32957232
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multi-length scale strengthening and cytocompatibility of ultra high molecular weight polyethylene bio-composites by functionalized carbon nanotube and hydroxyapatite reinforcement.
    Nayak C; Kushram P; Zaidi MAA; Singh I; Sen J; Balani K
    J Mech Behav Biomed Mater; 2023 Apr; 140():105694. PubMed ID: 36841125
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bone-like apatite layer formation on hydroxyapatite prepared by spark plasma sintering (SPS).
    Gu YW; Khor KA; Cheang P
    Biomaterials; 2004 Aug; 25(18):4127-34. PubMed ID: 15046903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of apatite ceramics containing alpha-tricalcium phosphate by immersion in simulated body fluid.
    Hirakata LM; Kon M; Asaoka K
    Biomed Mater Eng; 2003; 13(3):247-59. PubMed ID: 12883174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple surface modification of poly(epsilon-caprolactone) for apatite deposition from simulated body fluid.
    Oyane A; Uchida M; Choong C; Triffitt J; Jones J; Ito A
    Biomaterials; 2005 May; 26(15):2407-13. PubMed ID: 15585244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid structure in PCL-HAp scaffold resulting from biomimetic apatite growth.
    Lebourg M; Suay Antón J; Gomez Ribelles JL
    J Mater Sci Mater Med; 2010 Jan; 21(1):33-44. PubMed ID: 19728046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratcheting behavior of UHMWPE reinforced by carbon nanofibers (CNF) and hydroxyapatite (HA): Experiment and simulation.
    Wang J; Gao H; Gao L; Cui Y; Song Z
    J Mech Behav Biomed Mater; 2018 Dec; 88():176-184. PubMed ID: 30173070
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.