BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 33108368)

  • 21. Life at body temperatures below 0 degrees C: the physiology and biochemistry of Antarctic fishes.
    Sidell BD
    Gravit Space Biol Bull; 2000 Jun; 13(2):25-34. PubMed ID: 11543278
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Antarctic notothenioid fishes: genomic resources and strategies for analyzing an adaptive radiation.
    Detrich HW; Amemiya CT
    Integr Comp Biol; 2010 Dec; 50(6):1009-17. PubMed ID: 21082069
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Muscle metabolism and growth in Antarctic fishes (suborder Notothenioidei): evolution in a cold environment.
    Johnston IA
    Comp Biochem Physiol B Biochem Mol Biol; 2003 Dec; 136(4):701-13. PubMed ID: 14662295
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The major adult alpha-globin gene of antarctic teleosts and its remnants in the hemoglobinless icefishes. Calibration of the mutational clock for nuclear genes.
    Zhao Y; Ratnayake-Lecamwasam M; Parker SK; Cocca E; Camardella L; di Prisco G; Detrich HW
    J Biol Chem; 1998 Jun; 273(24):14745-52. PubMed ID: 9614073
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Biogeography and adaptation of Notothenioid fish: hemoglobin function and globin-gene evolution.
    di Prisco G; Eastman JT; Giordano D; Parisi E; Verde C
    Gene; 2007 Aug; 398(1-2):143-55. PubMed ID: 17553637
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Antarctic blackfin icefish genome reveals adaptations to extreme environments.
    Kim BM; Amores A; Kang S; Ahn DH; Kim JH; Kim IC; Lee JH; Lee SG; Lee H; Lee J; Kim HW; Desvignes T; Batzel P; Sydes J; Titus T; Wilson CA; Catchen JM; Warren WC; Schartl M; Detrich HW; Postlethwait JH; Park H
    Nat Ecol Evol; 2019 Mar; 3(3):469-478. PubMed ID: 30804520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary suppression of erythropoiesis via the modulation of TGF-β signalling in an Antarctic icefish.
    Xu Q; Cai C; Hu X; Liu Y; Guo Y; Hu P; Chen Z; Peng S; Zhang D; Jiang S; Wu Z; Chan J; Chen L
    Mol Ecol; 2015 Sep; 24(18):4664-78. PubMed ID: 26268413
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution in an extreme environment: developmental biases and phenotypic integration in the adaptive radiation of antarctic notothenioids.
    Hu Y; Ghigliotti L; Vacchi M; Pisano E; Detrich HW; Albertson RC
    BMC Evol Biol; 2016 Jun; 16(1):142. PubMed ID: 27356756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hyperoxia Does Not Extend Critical Thermal Maxima (CTmax) in White- or Red-Blooded Antarctic Notothenioid Fishes.
    Devor DP; Kuhn DE; O'Brien KM; Crockett EL
    Physiol Biochem Zool; 2016; 89(1):1-9. PubMed ID: 27082520
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evolution and function of the globin intergenic regulatory regions of the antarctic dragonfishes (Notothenioidei: Bathydraconidae).
    Lau YT; Parker SK; Near TJ; Detrich HW
    Mol Biol Evol; 2012 Mar; 29(3):1071-80. PubMed ID: 22075115
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genomics of Secondarily Temperate Adaptation in the Only Non-Antarctic Icefish.
    Rivera-Colón AG; Rayamajhi N; Minhas BF; Madrigal G; Bilyk KT; Yoon V; Hüne M; Gregory S; Cheng CHC; Catchen JM
    Mol Biol Evol; 2023 Mar; 40(3):. PubMed ID: 36806940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Resilience of cardiac performance in Antarctic notothenioid fishes in a warming climate.
    O'Brien KM; Joyce W; Crockett EL; Axelsson M; Egginton S; Farrell AP
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34042975
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain and sense organ anatomy and histology in hemoglobinless Antarctic icefishes (Perciformes: Notothenioidei: Channichthyidae).
    Eastman JT; Lannoo MJ
    J Morphol; 2004 Apr; 260(1):117-40. PubMed ID: 15052601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Conservation of the myoglobin gene among Antarctic notothenioid fishes.
    Vayda ME; Small DJ; Yuan ML; Costello L; Sidell BD
    Mol Mar Biol Biotechnol; 1997 Sep; 6(3):207-16. PubMed ID: 9284559
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exposure to critical thermal maxima increases oxidative stress in hearts of white- but not red-blooded Antarctic notothenioid fishes.
    Mueller IA; Devor DP; Grim JM; Beers JM; Crockett EL; O'Brien KM
    J Exp Biol; 2012 Oct; 215(Pt 20):3655-64. PubMed ID: 22811244
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Positive Darwinian selection operating on the immunoglobulin heavy chain of Antarctic fishes.
    Ota T; Nguyen TA; Huang E; Detrich HW; Amemiya CT
    J Exp Zool B Mol Dev Evol; 2003 Feb; 295(1):45-58. PubMed ID: 12548542
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Accelerated evolution at chaperone promoters among Antarctic notothenioid fishes.
    Bogan SN; Place SP
    BMC Evol Biol; 2019 Nov; 19(1):205. PubMed ID: 31694524
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogenetic investigations of Antarctic notothenioid fishes (Perciformes: Notothenioidei) using complete gene sequences of the mitochondrial encoded 16S rRNA.
    Near TJ; Pesavento JJ; Cheng CH
    Mol Phylogenet Evol; 2004 Sep; 32(3):881-91. PubMed ID: 15288063
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Antarctic fish hemoglobins: evidence for adaptive evolution at subzero temperature.
    Bargelloni L; Marcato S; Patarnello T
    Proc Natl Acad Sci U S A; 1998 Jul; 95(15):8670-5. PubMed ID: 9671736
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Historical contingency shapes adaptive radiation in Antarctic fishes.
    Daane JM; Dornburg A; Smits P; MacGuigan DJ; Brent Hawkins M; Near TJ; William Detrich Iii H; Harris MP
    Nat Ecol Evol; 2019 Jul; 3(7):1102-1109. PubMed ID: 31182814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.