These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
160 related articles for article (PubMed ID: 33108575)
1. Interpreting the Effect of Stimulus Parameters on the Electrically Evoked Compound Action Potential and on Neural Health Estimates. Brochier T; McKay CM; Carlyon RP J Assoc Res Otolaryngol; 2021 Feb; 22(1):81-94. PubMed ID: 33108575 [TBL] [Abstract][Full Text] [Related]
2. The Effect of Interphase Gap on Neural Response of the Electrically Stimulated Cochlear Nerve in Children With Cochlear Nerve Deficiency and Children With Normal-Sized Cochlear Nerves. He S; Xu L; Skidmore J; Chao X; Jeng FC; Wang R; Luo J; Wang H Ear Hear; 2020; 41(4):918-934. PubMed ID: 31688319 [TBL] [Abstract][Full Text] [Related]
3. Amplitude Growth Functions of Auditory Nerve Responses to Electric Pulse Stimulation With Varied Interphase Gaps in Cochlear Implant Users With Ipsilateral Residual Hearing. Imsiecke M; Büchner A; Lenarz T; Nogueira W Trends Hear; 2021; 25():23312165211014137. PubMed ID: 34181493 [TBL] [Abstract][Full Text] [Related]
4. Using the electrically-evoked compound action potential (ECAP) interphase gap effect to select electrode stimulation sites in cochlear implant users. Schvartz-Leyzac KC; Zwolan TA; Pfingst BE Hear Res; 2021 Jul; 406():108257. PubMed ID: 34020316 [TBL] [Abstract][Full Text] [Related]
5. Changes over time in the electrically evoked compound action potential (ECAP) interphase gap (IPG) effect following cochlear implantation in Guinea pigs. Schvartz-Leyzac KC; Colesa DJ; Buswinka CJ; Swiderski DL; Raphael Y; Pfingst BE Hear Res; 2019 Nov; 383():107809. PubMed ID: 31630082 [TBL] [Abstract][Full Text] [Related]
6. A Broadly Applicable Method for Characterizing the Slope of the Electrically Evoked Compound Action Potential Amplitude Growth Function. Skidmore J; Ramekers D; Colesa DJ; Schvartz-Leyzac KC; Pfingst BE; He S Ear Hear; 2022; 43(1):150-164. PubMed ID: 34241983 [TBL] [Abstract][Full Text] [Related]
7. Across-site patterns of electrically evoked compound action potential amplitude-growth functions in multichannel cochlear implant recipients and the effects of the interphase gap. Schvartz-Leyzac KC; Pfingst BE Hear Res; 2016 Nov; 341():50-65. PubMed ID: 27521841 [TBL] [Abstract][Full Text] [Related]
8. Insights Into Electrophysiological Metrics of Cochlear Health in Cochlear Implant Users Using a Computational Model. Takanen M; Strahl S; Schwarz K J Assoc Res Otolaryngol; 2024 Feb; 25(1):63-78. PubMed ID: 38278970 [TBL] [Abstract][Full Text] [Related]
9. Changes in the Electrically Evoked Compound Action Potential over time After Implantation and Subsequent Deafening in Guinea Pigs. Ramekers D; Benav H; Klis SFL; Versnel H J Assoc Res Otolaryngol; 2022 Dec; 23(6):721-738. PubMed ID: 35948695 [TBL] [Abstract][Full Text] [Related]
10. Electrophysiological Estimates of the Electrode-Neuron Interface Differ Between Younger and Older Listeners With Cochlear Implants. Jahn KN; Arenberg JG Ear Hear; 2020; 41(4):948-960. PubMed ID: 32032228 [TBL] [Abstract][Full Text] [Related]
11. How electrically evoked compound action potentials in chronically implanted guinea pigs relate to auditory nerve health and electrode impedance. Schvartz-Leyzac KC; Colesa DJ; Buswinka CJ; Rabah AM; Swiderski DL; Raphael Y; Pfingst BE J Acoust Soc Am; 2020 Dec; 148(6):3900. PubMed ID: 33379919 [TBL] [Abstract][Full Text] [Related]
12. Effects of Electrode Location on Estimates of Neural Health in Humans with Cochlear Implants. Schvartz-Leyzac KC; Holden TA; Zwolan TA; Arts HA; Firszt JB; Buswinka CJ; Pfingst BE J Assoc Res Otolaryngol; 2020 Jun; 21(3):259-275. PubMed ID: 32342256 [TBL] [Abstract][Full Text] [Related]
13. Speech Perception Performance in Cochlear Implant Recipients Correlates to the Number and Synchrony of Excited Auditory Nerve Fibers Derived From Electrically Evoked Compound Action Potentials. Dong Y; Briaire JJ; Stronks HC; Frijns JHM Ear Hear; 2023 Mar-Apr 01; 44(2):276-286. PubMed ID: 36253905 [TBL] [Abstract][Full Text] [Related]
14. What can stimulus polarity and interphase gap tell us about auditory nerve function in cochlear-implant recipients? Hughes ML; Choi S; Glickman E Hear Res; 2018 Mar; 359():50-63. PubMed ID: 29307495 [TBL] [Abstract][Full Text] [Related]
15. The Effect of Advanced Age on the Electrode-Neuron Interface in Cochlear Implant Users. Skidmore J; Carter BL; Riggs WJ; He S Ear Hear; 2022 Jul-Aug 01; 43(4):1300-1315. PubMed ID: 34935648 [TBL] [Abstract][Full Text] [Related]
17. Evaluating and Comparing Behavioural and Electrophysiological Estimates of Neural Health in Cochlear Implant Users. Brochier T; Guérit F; Deeks JM; Garcia C; Bance M; Carlyon RP J Assoc Res Otolaryngol; 2021 Feb; 22(1):67-80. PubMed ID: 33150541 [TBL] [Abstract][Full Text] [Related]
18. The Inter-Phase Gap Offset Effect as a Measure of Neural Health in Cochlear Implant Users With Residual Acoustic Hearing. Sijgers L; Röösli C; Bertschinger R; Epprecht L; Veraguth D; Dalbert A; Huber A; Pfiffner F Ear Hear; 2024 Jul; ():. PubMed ID: 39054580 [TBL] [Abstract][Full Text] [Related]
19. Slope of electrically evoked compound action potential amplitude growth function is site-dependent. Dziemba OC; Aristeidou A; Brill S Cochlear Implants Int; 2021 May; 22(3):136-147. PubMed ID: 33297870 [TBL] [Abstract][Full Text] [Related]
20. Assessing the Relationship Between Pitch Perception and Neural Health in Cochlear Implant Users. Arslan NO; Luo X J Assoc Res Otolaryngol; 2022 Dec; 23(6):875-887. PubMed ID: 36329369 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]