These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 33108827)

  • 1. Directed Evolution of a Halide Methyltransferase Enables Biocatalytic Synthesis of Diverse SAM Analogs.
    Tang Q; Grathwol CW; Aslan-Üzel AS; Wu S; Link A; Pavlidis IV; Badenhorst CPS; Bornscheuer UT
    Angew Chem Int Ed Engl; 2021 Jan; 60(3):1524-1527. PubMed ID: 33108827
    [TBL] [Abstract][Full Text] [Related]  

  • 2. From Natural Methylation to Versatile Alkylations Using Halide Methyltransferases.
    Tang Q; Pavlidis IV; Badenhorst CPS; Bornscheuer UT
    Chembiochem; 2021 Aug; 22(16):2584-2590. PubMed ID: 33890381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate Profiling of Anion Methyltransferases for Promiscuous Synthesis of S-Adenosylmethionine Analogs from Haloalkanes.
    Schülke KH; Ospina F; Hörnschemeyer K; Gergel S; Hammer SC
    Chembiochem; 2022 Feb; 23(4):e202100632. PubMed ID: 34927779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative
    Hoffmann A; Schülke KH; Hammer SC; Rentmeister A; Cornelissen NV
    Chem Commun (Camb); 2023 May; 59(36):5463-5466. PubMed ID: 37070635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Tandem Enzymatic sp
    Sadler JC; Humphreys LD; Snajdrova R; Burley GA
    Chembiochem; 2017 Jun; 18(11):992-995. PubMed ID: 28371017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient Transferase Engineering for SAM Analog Synthesis from Iodoalkanes.
    Schülke KH; Fröse JS; Klein A; Garcia-Borràs M; Hammer SC
    Chembiochem; 2024 May; 25(10):e202400079. PubMed ID: 38477872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Insights into S-adenosyl-l-methionine (SAM)-dependent methyltransferase related diseases and genetic polymorphisms.
    Li J; Sun C; Cai W; Li J; Rosen BP; Chen J
    Mutat Res Rev Mutat Res; 2021; 788():108396. PubMed ID: 34893161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Synthesis and application of the methyl analogues of
    Wang W; Dong M
    Sheng Wu Gong Cheng Xue Bao; 2023 Nov; 39(11):4428-4444. PubMed ID: 38013176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic S-Adenosylmethionine Regeneration Starting from Multiple Byproducts Enables Biocatalytic Alkylation with Radical SAM Enzymes.
    Gericke L; Mhaindarkar D; Karst LC; Jahn S; Kuge M; Mohr MKF; Gagsteiger J; Cornelissen NV; Wen X; Mordhorst S; Jessen HJ; Rentmeister A; Seebeck FP; Layer G; Loenarz C; Andexer JN
    Chembiochem; 2023 May; 24(9):e202300133. PubMed ID: 36942622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The specificity of interaction between S-adenosyl-L-methionine and a nucleolar 2'-O-methyltransferase.
    Segal DM; Eichler DC
    Arch Biochem Biophys; 1989 Dec; 275(2):334-43. PubMed ID: 2596846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential inhibitors of S-adenosylmethionine-dependent methyltransferases. 6. Structural modifications of S-adenosylmethionine.
    Borchardt RT; Shiong Y; Huber JA; Wycpalek AF
    J Med Chem; 1976 Sep; 19(9):1104-10. PubMed ID: 978675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biocatalytic Alkylation Cascades: Recent Advances and Future Opportunities for Late-Stage Functionalization.
    McKean IJW; Hoskisson PA; Burley GA
    Chembiochem; 2020 Oct; 21(20):2890-2897. PubMed ID: 32459052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. S-adenosyl-methionine-dependent methyltransferases: highly versatile enzymes in biocatalysis, biosynthesis and other biotechnological applications.
    Struck AW; Thompson ML; Wong LS; Micklefield J
    Chembiochem; 2012 Dec; 13(18):2642-55. PubMed ID: 23180741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo biosynthesis of pterostilbene in an Escherichia coli strain using a new resveratrol O-methyltransferase from Arabidopsis.
    Heo KT; Kang SY; Hong YS
    Microb Cell Fact; 2017 Feb; 16(1):30. PubMed ID: 28202018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemoenzymatic synthesis and utilization of a SAM analog with an isomorphic nucleobase.
    Vranken C; Fin A; Tufar P; Hofkens J; Burkart MD; Tor Y
    Org Biomol Chem; 2016 Jul; 14(26):6189-92. PubMed ID: 27270873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Universal, Continuous Assay for SAM-dependent Methyltransferases.
    Menke MJ; Schneider P; Badenhorst CPS; Kunzendorf A; Heinz F; Dörr M; Hayes MA; Bornscheuer UT
    Angew Chem Int Ed Engl; 2023 Dec; 62(51):e202313912. PubMed ID: 37917964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analogs of S-Adenosyl-L-Methionine in Studies of Methyltransferases].
    Rudenko AY; Mariasina SS; Sergiev PV; Polshakov VI
    Mol Biol (Mosk); 2022; 56(2):296-319. PubMed ID: 35403621
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthetic Reagents for Enzyme-Catalyzed Methylation.
    Wen X; Leisinger F; Leopold V; Seebeck FP
    Angew Chem Int Ed Engl; 2022 Oct; 61(41):e202208746. PubMed ID: 35989225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biocatalytic Fluoroalkylation Using Fluorinated
    Ding W; Zhou M; Li H; Li M; Qiu Y; Yin Y; Pan L; Yang W; Du Y; Zhang X; Tang Z; Liu W
    Org Lett; 2023 Aug; 25(30):5650-5655. PubMed ID: 37490590
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases.
    Zhang J; Zheng YG
    ACS Chem Biol; 2016 Mar; 11(3):583-97. PubMed ID: 26540123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.