These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33108952)

  • 1. Assessment of Compression Driven Shock Tube Designs in Replicating Free-Field Blast Conditions for Traumatic Brain Injury Studies.
    Sutar S; Ganpule SG
    J Neurotrauma; 2021 Jun; 38(12):1717-1729. PubMed ID: 33108952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.
    Kuriakose M; Skotak M; Misistia A; Kahali S; Sundaramurthy A; Chandra N
    PLoS One; 2016; 11(9):e0161597. PubMed ID: 27603017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.
    Reneer DV; Hisel RD; Hoffman JM; Kryscio RJ; Lusk BT; Geddes JW
    J Neurotrauma; 2011 Jan; 28(1):95-104. PubMed ID: 21083431
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of driver gas composition on production of scaled Friedlander waveforms in an open-ended shock tube model.
    Reeder EL; Liber ML; Traubert OD; O'Connell CJ; Turner RC; Robson MJ
    Biomed Phys Eng Express; 2022 Nov; 8(6):. PubMed ID: 36252558
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of secondary flow phenomena and their effect on primary shock conditions in shock tubes: Experimentation and numerical model.
    Kahali S; Townsend M; Mendez Nguyen M; Kim J; Alay E; Skotak M; Chandra N
    PLoS One; 2020; 15(1):e0227125. PubMed ID: 31945083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blast-Induced Traumatic Brain Injury Triggered by Moderate Intensity Shock Wave Using a Modified Experimental Model of Injury in Mice.
    Zhou Y; Wen LL; Wang HD; Zhou XM; Fang J; Zhu JH; Ding K
    Chin Med J (Engl); 2018 Oct; 131(20):2447-2460. PubMed ID: 30334530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and characterization of an open-ended shock tube for the study of blast mtbi.
    Shah Ms AS; Stemper Phd BD; Pintar Phd FA
    Biomed Sci Instrum; 2012; 48():393-400. PubMed ID: 22846311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shock Wave Physics as Related to Primary Non-Impact Blast-Induced Traumatic Brain Injury.
    Rutter B; Song H; DePalma RG; Hubler G; Cui J; Gu Z; Johnson CE
    Mil Med; 2021 Jan; 186(Suppl 1):601-609. PubMed ID: 33499439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Tissue Material Properties in Blast Loading: Coupled Experimentation and Finite Element Simulation.
    Townsend MT; Alay E; Skotak M; Chandra N
    Ann Biomed Eng; 2019 Sep; 47(9):2019-2032. PubMed ID: 30523466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A parametric approach to shape field-relevant blast wave profiles in compressed-gas-driven shock tube.
    Sundaramurthy A; Chandra N
    Front Neurol; 2014; 5():253. PubMed ID: 25520701
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blast-Associated Shock Waves Result in Increased Brain Vascular Leakage and Elevated ROS Levels in a Rat Model of Traumatic Brain Injury.
    Kabu S; Jaffer H; Petro M; Dudzinski D; Stewart D; Courtney A; Courtney M; Labhasetwar V
    PLoS One; 2015; 10(5):e0127971. PubMed ID: 26024446
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Gas-Driven Shock Tubes to Produce Blast Wave Signatures.
    Kumar R; Nedungadi A
    Front Neurol; 2020; 11():90. PubMed ID: 32153491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Blast-induced biomechanical loading of the rat: an experimental and anatomically accurate computational blast injury model.
    Sundaramurthy A; Alai A; Ganpule S; Holmberg A; Plougonven E; Chandra N
    J Neurotrauma; 2012 Sep; 29(13):2352-64. PubMed ID: 22620716
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Significant head accelerations can influence immediate neurological impairments in a murine model of blast-induced traumatic brain injury.
    Gullotti DM; Beamer M; Panzer MB; Chen YC; Patel TP; Yu A; Jaumard N; Winkelstein B; Bass CR; Morrison B; Meaney DF
    J Biomech Eng; 2014 Sep; 136(9):091004. PubMed ID: 24950710
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.
    Courtney AC; Andrusiv LP; Courtney MW
    Rev Sci Instrum; 2012 Apr; 83(4):045111. PubMed ID: 22559580
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Multiscale Approach to Blast Neurotrauma Modeling: Part I - Development of Novel Test Devices for in vivo and in vitro Blast Injury Models.
    Panzer MB; Matthews KA; Yu AW; Morrison B; Meaney DF; Bass CR
    Front Neurol; 2012; 3():46. PubMed ID: 22470367
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Fidelity Simulation of Primary Blast: Direct Effects on the Head.
    Sawyer TW; Wang Y; Ritzel DV; Josey T; Villanueva M; Shei Y; Nelson P; Hennes G; Weiss T; Vair C; Fan C; Barnes J
    J Neurotrauma; 2016 Jul; 33(13):1181-93. PubMed ID: 26582146
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Note: A table-top blast driven shock tube.
    Courtney MW; Courtney AC
    Rev Sci Instrum; 2010 Dec; 81(12):126103. PubMed ID: 21198058
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deformation of an airfoil-shaped brain surrogate under shock wave loading.
    Zhang L; Jackson WJ; Bentil SA
    J Mech Behav Biomed Mater; 2021 Aug; 120():104513. PubMed ID: 34010798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches.
    Ganpule S; Alai A; Plougonven E; Chandra N
    Biomech Model Mechanobiol; 2013 Jun; 12(3):511-31. PubMed ID: 22832705
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.