BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33109478)

  • 1. Efficient extraction and preservation of thermotolerant phycocyanins from red alga Cyanidioschyzon merolae.
    Yoshida C; Murakami M; Niwa A; Takeya M; Osanai T
    J Biosci Bioeng; 2021 Feb; 131(2):161-167. PubMed ID: 33109478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermostable phycocyanin from the red microalga
    Rahman DY; Sarian FD; van Wijk A; Martinez-Garcia M; van der Maarel MJEC
    J Appl Phycol; 2017; 29(3):1233-1239. PubMed ID: 28572707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a method for phycocyanin recovery from filamentous cyanobacteria and evaluation of its stability and antioxidant capacity.
    Aoki J; Sasaki D; Asayama M
    BMC Biotechnol; 2021 Jun; 21(1):40. PubMed ID: 34134665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A reaction center-dependent photoprotection mechanism in a highly robust photosystem II from an extremophilic red alga, Cyanidioschyzon merolae.
    Krupnik T; Kotabová E; van Bezouwen LS; Mazur R; Garstka M; Nixon PJ; Barber J; Kaňa R; Boekema EJ; Kargul J
    J Biol Chem; 2013 Aug; 288(32):23529-42. PubMed ID: 23775073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of phycocyanin--a pigment with applications in biology, biotechnology, foods and medicine.
    Eriksen NT
    Appl Microbiol Biotechnol; 2008 Aug; 80(1):1-14. PubMed ID: 18563408
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light adaptation of the unicellular red alga, Cyanidioschyzon merolae, probed by time-resolved fluorescence spectroscopy.
    Ueno Y; Aikawa S; Kondo A; Akimoto S
    Photosynth Res; 2015 Aug; 125(1-2):211-8. PubMed ID: 25577254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biliproteins and phycobilisomes from cyanobacteria and red algae at the extremes of habitat.
    Samsonoff WA; MacColl R
    Arch Microbiol; 2001 Dec; 176(6):400-5. PubMed ID: 11734882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photosynthesis of the Cyanidioschyzon merolae cells in blue, red, and white light.
    Parys E; Krupnik T; Kułak I; Kania K; Romanowska E
    Photosynth Res; 2021 Jan; 147(1):61-73. PubMed ID: 33231791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photorespiratory glycolate oxidase is essential for the survival of the red alga Cyanidioschyzon merolae under ambient CO2 conditions.
    Rademacher N; Kern R; Fujiwara T; Mettler-Altmann T; Miyagishima SY; Hagemann M; Eisenhut M; Weber AP
    J Exp Bot; 2016 May; 67(10):3165-75. PubMed ID: 26994474
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression of the Cyanidioschyzon merolae stromal ascorbate peroxidase in Arabidopsis thaliana enhances thermotolerance.
    Hirooka S; Misumi O; Yoshida M; Mori T; Nishida K; Yagisawa F; Yoshida Y; Fujiwara T; Kuroiwa H; Kuroiwa T
    Plant Cell Rep; 2009 Dec; 28(12):1881-93. PubMed ID: 19859717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraction of phycocyanin-A natural blue colorant from dried spirulina biomass: Influence of processing parameters and extraction techniques.
    Li Y; Zhang Z; Paciulli M; Abbaspourrad A
    J Food Sci; 2020 Mar; 85(3):727-735. PubMed ID: 31999367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carotenoid biosynthesis in the primitive red alga Cyanidioschyzon merolae.
    Cunningham FX; Lee H; Gantt E
    Eukaryot Cell; 2007 Mar; 6(3):533-45. PubMed ID: 17085635
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing Phycocyanin Extraction from Cyanobacterial Biomass: A Comparative Study of Freeze-Thaw Cycling with Various Solvents.
    Pispas K; Manthos G; Sventzouri E; Geroulia M; Mastropetros SG; Ali SS; Kornaros M
    Mar Drugs; 2024 May; 22(6):. PubMed ID: 38921557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stable expression of a GFP-reporter gene in the red alga Cyanidioschyzon merolae.
    Watanabe S; Sato J; Imamura S; Ohnuma M; Ohoba Y; Chibazakura T; Tanaka K; Yoshikawa H
    Biosci Biotechnol Biochem; 2014; 78(1):175-7. PubMed ID: 25036501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Unicellular Red Alga Cyanidioschyzon merolae-The Simplest Model of a Photosynthetic Eukaryote.
    Miyagishima SY; Tanaka K
    Plant Cell Physiol; 2021 Sep; 62(6):926-941. PubMed ID: 33836072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phototaxis of the Unicellular Red Alga
    Maschmann S; Ruban K; Wientapper J; Walter WJ
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32867346
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A cascade extraction of active phycocyanin and fatty acids from Galdieria phlegrea.
    Imbimbo P; Romanucci V; Pollio A; Fontanarosa C; Amoresano A; Zarrelli A; Olivieri G; Monti DM
    Appl Microbiol Biotechnol; 2019 Dec; 103(23-24):9455-9464. PubMed ID: 31696285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of phytochelatin synthase produced by the primitive red alga Cyanidioschyzon merolae.
    Osaki Y; Shirabe T; Nakanishi H; Wakagi T; Yoshimura E
    Metallomics; 2009; 1(4):353-8. PubMed ID: 21305133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Abscisic Acid Participates in the Control of Cell Cycle Initiation Through Heme Homeostasis in the Unicellular Red Alga Cyanidioschyzon merolae.
    Kobayashi Y; Ando H; Hanaoka M; Tanaka K
    Plant Cell Physiol; 2016 May; 57(5):953-60. PubMed ID: 27044672
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cultivation of the polyextremophile
    Villegas-Valencia M; González-Portela RE; de Freitas BB; Al Jahdali A; Romero-Villegas GI; Malibari R; Kapoore RV; Fuentes-Grünewald C; Lauersen KJ
    Front Microbiol; 2023; 14():1157151. PubMed ID: 37152750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.