These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 33109750)

  • 1. Biomimetic Gut Model Systems for Development of Targeted Microbial Solutions for Enhancing Warfighter Health and Performance.
    Brinkac LM; Rahman N; Chua LL; Thomas S
    mSystems; 2020 Oct; 5(5):. PubMed ID: 33109750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. US Department of Defense Warfighter Brain Health Initiative: Maximizing performance on and off the battlefield.
    Lee KM; Khatri TL; Fudge ER
    J Am Assoc Nurse Pract; 2020 Nov; 32(11):720-728. PubMed ID: 33177333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Total Lipopolysaccharide from the Human Gut Microbiome Silences Toll-Like Receptor Signaling.
    d'Hennezel E; Abubucker S; Murphy LO; Cullen TW
    mSystems; 2017; 2(6):. PubMed ID: 29152585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Current and Future State of Department of Defense (DoD) Microbiome Research: a Summary of the Inaugural DoD Tri-Service Microbiome Consortium Informational Meeting.
    Glaven S; Racicot K; Leary DH; Karl JP; Arcidiacono S; Dancy BCR; Chrisey LA; Soares JW
    mSystems; 2018; 3(4):. PubMed ID: 30003144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moderate Exercise Has Limited but Distinguishable Effects on the Mouse Microbiome.
    Lamoureux EV; Grandy SA; Langille MGI
    mSystems; 2017; 2(4):. PubMed ID: 28845459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Japanese quail (Coturnix japonica) as a novel model to study the relationship between the avian microbiome and microbial endocrinology-based host-microbe interactions.
    Lyte JM; Keane J; Eckenberger J; Anthony N; Shrestha S; Marasini D; Daniels KM; Caputi V; Donoghue AM; Lyte M
    Microbiome; 2021 Feb; 9(1):38. PubMed ID: 33531080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic phenotyping for understanding the gut microbiome and host metabolic interplay.
    Basson AR; Wijeyesekera A
    Emerg Top Life Sci; 2017 Nov; 1(4):325-332. PubMed ID: 33525773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ecophylogenetics Clarifies the Evolutionary Association between Mammals and Their Gut Microbiota.
    Gaulke CA; Arnold HK; Humphreys IR; Kembel SW; O'Dwyer JP; Sharpton TJ
    mBio; 2018 Sep; 9(5):. PubMed ID: 30206171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sea Cucumber Intestinal Regeneration Reveals Deterministic Assembly of the Gut Microbiome.
    Weigel BL
    Appl Environ Microbiol; 2020 Jul; 86(14):. PubMed ID: 32358014
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Current advances in microbiome sciences within the US Department of Defense-part 1: microbiomes for human health and performance.
    Colston SM; Barbato RA; Goodson MS; Karl JP; Kokoska RJ; Leary DD; Racicot K; Varaljay V; Soares JW
    BMJ Mil Health; 2023 Jun; ():. PubMed ID: 37321678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gut-on-a-Chip Models: Current and Future Perspectives for Host-Microbial Interactions Research.
    Morelli M; Kurek D; Ng CP; Queiroz K
    Biomedicines; 2023 Feb; 11(2):. PubMed ID: 36831155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Potential Role of the Intestinal Micromilieu and Individual Microbes in the Immunobiology of Chimeric Antigen Receptor T-Cell Therapy.
    Schubert ML; Rohrbach R; Schmitt M; Stein-Thoeringer CK
    Front Immunol; 2021; 12():670286. PubMed ID: 34135898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Emulating Host-Microbiome Ecosystem of Human Gastrointestinal Tract in Vitro.
    Park GS; Park MH; Shin W; Zhao C; Sheikh S; Oh SJ; Kim HJ
    Stem Cell Rev Rep; 2017 Jun; 13(3):321-334. PubMed ID: 28488235
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current advances in microbiome sciences within the US Department of Defense: part 2 - enabling technologies and environmental microbiomes.
    Colston SM; Barbato RA; Goodson MS; Karl JP; Kokoska RJ; Leary DD; Racicot K; Varaljay V; Soares JW
    BMJ Mil Health; 2023 Jun; ():. PubMed ID: 37336582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The role of gut microbiome in modulating response to immune checkpoint inhibitor therapy in cancer.
    Naqash AR; Kihn-Alarcón AJ; Stavraka C; Kerrigan K; Maleki Vareki S; Pinato DJ; Puri S
    Ann Transl Med; 2021 Jun; 9(12):1034. PubMed ID: 34277834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overview of the rules of the microbial engagement in the gut microbiome: a step towards microbiome therapeutics.
    Yadav M; Chauhan NS
    J Appl Microbiol; 2021 May; 130(5):1425-1441. PubMed ID: 33022786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gut microbiome-host interactions in health and disease.
    Kinross JM; Darzi AW; Nicholson JK
    Genome Med; 2011 Mar; 3(3):14. PubMed ID: 21392406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unraveling Interactions between the Microbiome and the Host Immune System To Decipher Mechanisms of Disease.
    Lozupone CA
    mSystems; 2018; 3(2):. PubMed ID: 29556546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From next-generation sequencing to systematic modeling of the gut microbiome.
    Ji B; Nielsen J
    Front Genet; 2015; 6():219. PubMed ID: 26157455
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Understanding the gut microbiome of dairy calves: Opportunities to improve early-life gut health.
    Malmuthuge N; Guan LL
    J Dairy Sci; 2017 Jul; 100(7):5996-6005. PubMed ID: 28501408
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.