BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 3311005)

  • 1. Synthesis, storage and degradation of myocardial triglycerides.
    Stam H; Schoonderwoerd K; Hülsmann WC
    Basic Res Cardiol; 1987; 82 Suppl 1():19-28. PubMed ID: 3311005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hormones and triacylglycerol metabolism under normoxic and ischemic conditions.
    Schoonderwoerd K; van der Kraaij T; Hülsmann WC; Stam H
    Mol Cell Biochem; 1989 Jun 27-Jul 24; 88(1-2):129-37. PubMed ID: 2674663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of lysosome-like particles in the metabolism of endogenous myocardial triglycerides during ischemia/reperfusion. Uptake and degradation of triglycerides by lysosomes isolated from rat heart.
    Schoonderwoerd K; Broekhoven-Schokker S; Hülsmann WC; Stam H
    Basic Res Cardiol; 1990; 85(2):153-63. PubMed ID: 2350329
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Localization and function of myocardial lipolysis.
    Hülsmann WC; Stam H; Jansen H
    Basic Res Cardiol; 1984; 79(3):268-73. PubMed ID: 6477380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of lipases involved in the supply of substrate fatty acids for the heart.
    Stam H; Hülsmann WC
    Eur Heart J; 1985 Feb; 6(2):158-67. PubMed ID: 4006968
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of myocardial neutral triglyceride lipase activity by adenosine-3':5'-monophosphate: involvement of glycogenolysis.
    Schoonderwoerd K; Broekhoven-Schokker S; Hülsmann WC; Stam H
    Basic Res Cardiol; 1987; 82 Suppl 1():29-35. PubMed ID: 2821982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced lipolysis of myocardial triglycerides during low-flow ischemia and anoxia in the isolated rat heart.
    Schoonderwoerd K; Broekhoven-Schokker S; Hülsmann WC; Stam H
    Basic Res Cardiol; 1989; 84(2):165-73. PubMed ID: 2730523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of myocardial neutral triglyceride lipase and neutral cholesterol esterase by cAMP-dependent protein kinase.
    Goldberg DI; Khoo JC
    J Biol Chem; 1985 May; 260(10):5879-82. PubMed ID: 2987207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The activities of lipoprotein lipase and of enzymes involved in triacylglycerol synthesis in rat adipose tissue. Effects of starvation, dietary modification and of corticotropin injection.
    Lawson N; Pollard AD; Jennings RJ; Gurr MI; Brindley DN
    Biochem J; 1981 Nov; 200(2):285-94. PubMed ID: 6280682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The skeletal and heart muscle triacylglycerol lipolysis revisited.
    Knapp M; Gorski J
    J Physiol Pharmacol; 2017 Feb; 68(1):3-11. PubMed ID: 28456765
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intracellular origin and regulation of endogenous lipolysis in rat heart.
    Stam H; Hülsmann WC
    Adv Myocardiol; 1982; 3():499-507. PubMed ID: 7170438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of drugs and hormones on lipolysis in heart.
    Lech JJ; Jesmok GJ; Calvert DN
    Fed Proc; 1977 Jun; 36(7):2000-8. PubMed ID: 16785
    [No Abstract]   [Full Text] [Related]  

  • 13. Pharmacological intervention of liver triacylglycerol lipolysis: The good, the bad and the ugly.
    Quiroga AD; Lehner R
    Biochem Pharmacol; 2018 Sep; 155():233-241. PubMed ID: 30006193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adipose tissue lipolysis as a metabolic pathway to define pharmacological strategies against obesity and the metabolic syndrome.
    Langin D
    Pharmacol Res; 2006 Jun; 53(6):482-91. PubMed ID: 16644234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. α-Eleostearic acid-containing triglycerides for a continuous assay to determine lipase sn-1 and sn-3 regio-preference.
    El Alaoui M; Soulère L; Noiriel A; Queneau Y; Abousalham A
    Chem Phys Lipids; 2017 Aug; 206():43-52. PubMed ID: 28629973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The GTPase ARFRP1 affects lipid droplet protein composition and triglyceride release from intracellular storage of intestinal Caco-2 cells.
    Werno MW; Wilhelmi I; Kuropka B; Ebert F; Freund C; Schürmann A
    Biochem Biophys Res Commun; 2018 Nov; 506(1):259-265. PubMed ID: 30348522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ATGL-mediated triglyceride turnover and the regulation of mitochondrial capacity in skeletal muscle.
    Meex RC; Hoy AJ; Mason RM; Martin SD; McGee SL; Bruce CR; Watt MJ
    Am J Physiol Endocrinol Metab; 2015 Jun; 308(11):E960-70. PubMed ID: 25852007
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of lipoprotein lipase and hepatic lipase on the transformation of VLDL and HDL during lipolysis of VLDL.
    Murdoch SJ; Breckenridge WC
    Atherosclerosis; 1995 Dec; 118(2):193-212. PubMed ID: 8770314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of lipoprotein lipase activity on lipoprotein metabolism and the fate of circulating triglycerides in pregnancy.
    Herrera E; Lasunción MA; Gomez-Coronado D; Aranda P; López-Luna P; Maier I
    Am J Obstet Gynecol; 1988 Jun; 158(6 Pt 2):1575-83. PubMed ID: 3287929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulatory role for the arginine-nitric oxide pathway in metabolism of energy substrates.
    Jobgen WS; Fried SK; Fu WJ; Meininger CJ; Wu G
    J Nutr Biochem; 2006 Sep; 17(9):571-88. PubMed ID: 16524713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.