These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 33110182)

  • 1. Resolving the data asynchronicity in high-speed atomic force microscopy measurement via the Kalman Smoother.
    Kubo S; Kato S; Nakamura K; Kodera N; Takada S
    Sci Rep; 2020 Oct; 10(1):18393. PubMed ID: 33110182
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Particle Smoother to Assimilate Asynchronous Movie Data of High-Speed AFM with MD Simulations.
    Kato S; Takada S; Fuchigami S
    J Chem Theory Comput; 2023 Jul; 19(14):4678-4688. PubMed ID: 37097918
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Particle Filter Method to Integrate High-Speed Atomic Force Microscopy Measurements with Biomolecular Simulations.
    Fuchigami S; Niina T; Takada S
    J Chem Theory Comput; 2020 Oct; 16(10):6609-6619. PubMed ID: 32805119
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Removing the parachuting artifact using two-way scanning data in high-speed atomic force microscopy.
    Kubo S; Umeda K; Kodera N; Takada S
    Biophys Physicobiol; 2023; 20(1):e200006. PubMed ID: 37234854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applications of high-speed atomic force microscopy to real-time visualization of dynamic biomolecular processes.
    Uchihashi T; Scheuring S
    Biochim Biophys Acta Gen Subj; 2018 Feb; 1862(2):229-240. PubMed ID: 28716648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ultra-wide scanner for large-area high-speed atomic force microscopy with megapixel resolution.
    Marchesi A; Umeda K; Komekawa T; Matsubara T; Flechsig H; Ando T; Watanabe S; Kodera N; Franz CM
    Sci Rep; 2021 Jun; 11(1):13003. PubMed ID: 34155261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Fixed-Lag Kalman Smoother to Filter Power Line Interference in Electrocardiogram Recordings.
    Warmerdam GJJ; Vullings R; Schmitt L; Van Laar JOEH; Bergmans JWM
    IEEE Trans Biomed Eng; 2017 Aug; 64(8):1852-1861. PubMed ID: 27845652
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-speed near-field fluorescence microscopy combined with high-speed atomic force microscopy for biological studies.
    Umakoshi T; Fukuda S; Iino R; Uchihashi T; Ando T
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129325. PubMed ID: 30890438
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images.
    Ogane T; Noshiro D; Ando T; Yamashita A; Sugita Y; Matsunaga Y
    PLoS Comput Biol; 2022 Dec; 18(12):e1010384. PubMed ID: 36580448
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-speed atomic force microscopy: imaging and force spectroscopy.
    Eghiaian F; Rico F; Colom A; Casuso I; Scheuring S
    FEBS Lett; 2014 Oct; 588(19):3631-8. PubMed ID: 24937145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Fitting of Biomolecular Structures to Atomic Force Microscopy Images via Biased Molecular Simulations.
    Niina T; Fuchigami S; Takada S
    J Chem Theory Comput; 2020 Feb; 16(2):1349-1358. PubMed ID: 31909999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new class of nonlinear Rauch-Tung-Striebel cubature Kalman smoothers.
    Jia B; Xin M
    ISA Trans; 2015 Mar; 55():72-80. PubMed ID: 25440949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-molecule imaging of dynamic motions of biomolecules in DNA origami nanostructures using high-speed atomic force microscopy.
    Endo M; Sugiyama H
    Acc Chem Res; 2014 Jun; 47(6):1645-53. PubMed ID: 24601497
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct visualization of avian influenza H5N1 hemagglutinin precursor and its conformational change by high-speed atomic force microscopy.
    Lim KS; Mohamed MS; Wang H; Hartono ; Hazawa M; Kobayashi A; Voon DC; Kodera N; Ando T; Wong RW
    Biochim Biophys Acta Gen Subj; 2020 Feb; 1864(2):129313. PubMed ID: 30825615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Speed Atomic Force Microscopy to Study Myosin Motility.
    Kodera N; Ando T
    Adv Exp Med Biol; 2020; 1239():127-152. PubMed ID: 32451858
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-speed atomic force microscopy imaging of live mammalian cells.
    Shibata M; Watanabe H; Uchihashi T; Ando T; Yasuda R
    Biophys Physicobiol; 2017; 14():127-135. PubMed ID: 28900590
    [TBL] [Abstract][Full Text] [Related]  

  • 17. End-to-end differentiable blind tip reconstruction for noisy atomic force microscopy images.
    Matsunaga Y; Fuchigami S; Ogane T; Takada S
    Sci Rep; 2023 Jan; 13(1):129. PubMed ID: 36599879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reconstruction of Three-Dimensional Conformations of Bacterial ClpB from High-Speed Atomic-Force-Microscopy Images.
    Dasgupta B; Miyashita O; Uchihashi T; Tama F
    Front Mol Biosci; 2021; 8():704274. PubMed ID: 34422905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Software for drift compensation, particle tracking and particle analysis of high-speed atomic force microscopy image series.
    Husain M; Boudier T; Paul-Gilloteaux P; Casuso I; Scheuring S
    J Mol Recognit; 2012 May; 25(5):292-8. PubMed ID: 22528191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent advances in bioimaging with high-speed atomic force microscopy.
    Uchihashi T; Ganser C
    Biophys Rev; 2020 Apr; 12(2):363-369. PubMed ID: 32172451
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.