These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 33110975)

  • 21. Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering.
    Balguid A; Mol A; van Marion MH; Bank RA; Bouten CV; Baaijens FP
    Tissue Eng Part A; 2009 Feb; 15(2):437-44. PubMed ID: 18694294
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrospun halloysite nanotube loaded polyhydroxybutyrate-starch fibers for cartilage tissue engineering.
    Movahedi M; Karbasi S
    Int J Biol Macromol; 2022 Aug; 214():301-311. PubMed ID: 35714870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrospun Pectin-Polyhydroxybutyrate Nanofibers for Retinal Tissue Engineering.
    Chan SY; Chan BQY; Liu Z; Parikh BH; Zhang K; Lin Q; Su X; Kai D; Choo WS; Young DJ; Loh XJ
    ACS Omega; 2017 Dec; 2(12):8959-8968. PubMed ID: 30023596
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Core-Shell Magnetoactive PHB/Gelatin/Magnetite Composite Electrospun Scaffolds for Biomedical Applications.
    Pryadko AS; Botvin VV; Mukhortova YR; Pariy I; Wagner DV; Laktionov PP; Chernonosova VS; Chelobanov BP; Chernozem RV; Surmeneva MA; Kholkin AL; Surmenev RA
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160518
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of electrospun poly(D,L-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption.
    Leong MF; Chian KS; Mhaisalkar PS; Ong WF; Ratner BD
    J Biomed Mater Res A; 2009 Jun; 89(4):1040-8. PubMed ID: 18478557
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Relative Humidity on the Electrospinning Performance of Regenerated Silk Solution.
    Park BK; Um IC
    Polymers (Basel); 2021 Jul; 13(15):. PubMed ID: 34372082
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biocompatibility evaluation of electrospun aligned poly (propylene carbonate) nanofibrous scaffolds with peripheral nerve tissues and cells in vitro.
    Wang Y; Zhao Z; Zhao B; Qi HX; Peng J; Zhang L; Xu WJ; Hu P; Lu SB
    Chin Med J (Engl); 2011 Aug; 124(15):2361-6. PubMed ID: 21933569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential of an electrospun composite scaffold of poly (3-hydroxybutyrate)-chitosan/alumina nanowires in bone tissue engineering applications.
    Toloue EB; Karbasi S; Salehi H; Rafienia M
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():1075-1091. PubMed ID: 30889640
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Towards functional 3D-stacked electrospun composite scaffolds of PHBV, silk fibroin and nanohydroxyapatite: Mechanical properties and surface osteogenic differentiation.
    Paşcu EI; Cahill PA; Stokes J; McGuinness GB
    J Biomater Appl; 2016 Apr; 30(9):1334-49. PubMed ID: 26767394
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation and cytocompatibility of PLGA scaffolds with controllable fiber morphology and diameter using electrospinning method.
    Zhao L; He C; Gao Y; Cen L; Cui L; Cao Y
    J Biomed Mater Res B Appl Biomater; 2008 Oct; 87(1):26-34. PubMed ID: 18384158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multifunctional Scaffolds with Improved Antimicrobial Properties and Osteogenicity Based on Piezoelectric Electrospun Fibers Decorated with Bioactive Composite Microcapsules.
    Timin AS; Muslimov AR; Zyuzin MV; Peltek OO; Karpov TE; Sergeev IS; Dotsenko AI; Goncharenko AA; Yolshin ND; Sinelnik A; Krause B; Baumbach T; Surmeneva MA; Chernozem RV; Sukhorukov GB; Surmenev RA
    ACS Appl Mater Interfaces; 2018 Oct; 10(41):34849-34868. PubMed ID: 30230807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Evaluating the osteogenic properties of polyhydroxybutyrate-zein/multiwalled carbon nanotubes (MWCNTs) electrospun composite scaffold for bone tissue engineering applications.
    Esmaeili M; Ghasemi S; Shariati L; Karbasi S
    Int J Biol Macromol; 2024 Jul; 276(Pt 2):133829. PubMed ID: 39002904
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel electrospun poly-hydroxybutyrate scaffolds as carriers for the wound healing agents alkannins and shikonins.
    Arampatzis AS; Giannakoula K; Kontogiannopoulos KN; Theodoridis K; Aggelidou E; Rat A; Kampasakali E; Willems A; Christofilos D; Kritis A; Papageorgiou VP; Tsivintzelis I; Assimopoulou AN
    Regen Biomater; 2021 Jun; 8(3):rbab011. PubMed ID: 34211727
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of relative humidity on electrospun polymer fibers: From structural changes to fiber morphology.
    Szewczyk PK; Stachewicz U
    Adv Colloid Interface Sci; 2020 Dec; 286():102315. PubMed ID: 33197707
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Poly(hydroxybutyrate)/cellulose acetate blend nanofiber scaffolds: Preparation, characterization and cytocompatibility.
    Zhijiang C; Yi X; Haizheng Y; Jia J; Liu Y
    Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():757-67. PubMed ID: 26478369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of cellulose nanofibers on polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications.
    Mohammadalipour M; Karbasi S; Behzad T; Mohammadalipour Z; Zamani M
    Int J Biol Macromol; 2022 Nov; 220():1402-1414. PubMed ID: 36116594
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Biocompatibility of electrospun poly(3-hydroxybutyrate) and its composites scaffolds for tissue engineering].
    Zharkova II; Staroverova OV; Voinova VV; Andreeva NV; Shushckevich AM; Sklyanchuk ED; Kuzmicheva GM; Bespalova AE; Akulina EA; Shaitan KV; Okhlov AA
    Biomed Khim; 2014; 60(5):553-60. PubMed ID: 25386884
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis and characterization of electrospun nanofibrous tissue engineering scaffolds generated from in situ polymerization of ionomeric polyurethane composites.
    Chan JP; Battiston KG; Santerre JP
    Acta Biomater; 2019 Sep; 96():161-174. PubMed ID: 31254683
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polyhydroxybutyrate and its copolymer with polyhydroxyvalerate as biomaterials: influence on progression of stem cell cycle.
    Ahmed T; Marçal H; Lawless M; Wanandy NS; Chiu A; Foster LJ
    Biomacromolecules; 2010 Oct; 11(10):2707-15. PubMed ID: 20849100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Osteogenic potential of PHB-lignin/cellulose nanofiber electrospun scaffold as a novel bone regeneration construct.
    Mohammadalipour M; Behzad T; Karbasi S; Babaei Khorzoghi M; Mohammadalipour Z
    Int J Biol Macromol; 2023 Oct; 250():126076. PubMed ID: 37532195
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.