These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

266 related articles for article (PubMed ID: 33110976)

  • 41. Electrostatic Self-Assembly of Ti
    Xie H; Li P; Shao J; Huang H; Chen Y; Jiang Z; Chu PK; Yu XF
    ACS Sens; 2019 Sep; 4(9):2303-2310. PubMed ID: 31385492
    [TBL] [Abstract][Full Text] [Related]  

  • 42. W
    Li M; Fan X; Gao Y; Qiu T
    J Phys Chem Lett; 2019 Jul; 10(14):4038-4044. PubMed ID: 31265302
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Substrate types and applications of MXene for surface-enhanced Raman spectroscopy.
    Liu ZW; Wang G; Li YF; Yu Y
    Front Chem; 2024; 12():1378985. PubMed ID: 38545468
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Self-assembly of various Au nanocrystals on functionalized water-stable PVA/PEI nanofibers: a highly efficient surface-enhanced Raman scattering substrates with high density of "hot" spots.
    Zhu H; Du M; Zhang M; Wang P; Bao S; Zou M; Fu Y; Yao J
    Biosens Bioelectron; 2014 Apr; 54():91-101. PubMed ID: 24252765
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Study of charge transfer contribution in Surface-Enhanced Raman scattering (SERS) based on indium oxide nanoparticle substrates.
    Liu H; Li Q; Ma Y; Wang S; Wang Y; Zhao B; Zhao L; Jiang Z; Xu L; Ruan W
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Dec; 303():123168. PubMed ID: 37515886
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Unusual Raman Enhancement Effect of Ultrathin Copper Sulfide.
    Kim G; Jeong DW; Lee G; Lee S; Ma KY; Hwang H; Jang S; Hong J; Pak S; Cha S; Cho D; Kim S; Lim J; Lee YW; Shin HS; Jang AR; Lee JO
    Small; 2024 Mar; 20(9):e2306819. PubMed ID: 38152985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Experimental and theoretical evaluation of crystal facet exposure on the charge transfer and SERS activity of ZnO films.
    Luo Y; Niu L; Wang Y; Wen P; Gong Y; Li C; Xu S
    Nanoscale; 2022 Nov; 14(43):16220-16232. PubMed ID: 36281819
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Quasi-Metal for Highly Sensitive and Stable Surface-Enhanced Raman Scattering.
    Tian Z; Bai H; Chen C; Ye Y; Kong Q; Li Y; Fan W; Yi W; Xi G
    iScience; 2019 Sep; 19():836-849. PubMed ID: 31505331
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Sn⁴⁺ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance.
    Luo J; Tao X; Zhang J; Xia Y; Huang H; Zhang L; Gan Y; Liang C; Zhang W
    ACS Nano; 2016 Feb; 10(2):2491-9. PubMed ID: 26836262
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Plasmon-enabled N
    Chang B; Guo Y; Wu D; Li L; Yang B; Wang J
    Chem Sci; 2021 Aug; 12(33):11213-11224. PubMed ID: 34522319
    [TBL] [Abstract][Full Text] [Related]  

  • 51. 2D magnetic titanium carbide MXene for cancer theranostics.
    Liu Z; Zhao M; Lin H; Dai C; Ren C; Zhang S; Peng W; Chen Y
    J Mater Chem B; 2018 Jun; 6(21):3541-3548. PubMed ID: 32254449
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hierarchical Ti
    Li L; Jiang G; An C; Xie Z; Wang Y; Jiao L; Yuan H
    Nanoscale; 2020 May; 12(18):10369-10379. PubMed ID: 32369075
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Plasmon-Free Surface-Enhanced Raman Spectroscopy Using Metallic 2D Materials.
    Song X; Wang Y; Zhao F; Li Q; Ta HQ; Rümmeli MH; Tully CG; Li Z; Yin WJ; Yang L; Lee KB; Yang J; Bozkurt I; Liu S; Zhang W; Chhowalla M
    ACS Nano; 2019 Jul; 13(7):8312-8319. PubMed ID: 31284713
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Semiconductor-enhanced Raman scattering: active nanomaterials and applications.
    Han XX; Ji W; Zhao B; Ozaki Y
    Nanoscale; 2017 Apr; 9(15):4847-4861. PubMed ID: 28150834
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recent progress on graphene-based substrates for surface-enhanced Raman scattering applications.
    Lai H; Xu F; Zhang Y; Wang L
    J Mater Chem B; 2018 Jun; 6(24):4008-4028. PubMed ID: 32255147
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tailored surface-enhanced Raman nanopillar arrays fabricated by laser-assisted replication for biomolecular detection using organic semiconductor lasers.
    Liu X; Lebedkin S; Besser H; Pfleging W; Prinz S; Wissmann M; Schwab PM; Nazarenko I; Guttmann M; Kappes MM; Lemmer U
    ACS Nano; 2015 Jan; 9(1):260-70. PubMed ID: 25514354
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly reproducible surface-enhanced Raman scattering-active Au nanostructures prepared by simple electrodeposition: origin of surface-enhanced Raman scattering activity and applications as electrochemical substrates.
    Choi S; Ahn M; Kim J
    Anal Chim Acta; 2013 May; 779():1-7. PubMed ID: 23663665
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Three-Dimensional Au-Coated Electrosprayed Nanostructured BODIPY Films on Aluminum Foil as Surface-Enhanced Raman Scattering Platforms and Their Catalytic Applications.
    Yilmaz M; Erkartal M; Ozdemir M; Sen U; Usta H; Demirel G
    ACS Appl Mater Interfaces; 2017 May; 9(21):18199-18206. PubMed ID: 28480705
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergistic Enhancement Effect for Boosting Raman Detection Sensitivity of Antibiotics.
    Zhai Y; Zheng Y; Ma Z; Cai Y; Wang F; Guo X; Wen Y; Yang H
    ACS Sens; 2019 Nov; 4(11):2958-2965. PubMed ID: 31533426
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing.
    Karthick Kannan P; Shankar P; Blackman C; Chung CH
    Adv Mater; 2019 Aug; 31(34):e1803432. PubMed ID: 30773698
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.