These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 33111067)
1. Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase. Ma Y; Yuan J; Chang X STAR Protoc; 2020 Jun; 1(1):100005. PubMed ID: 33111067 [TBL] [Abstract][Full Text] [Related]
2. Genetic Modulation of RNA Splicing with a CRISPR-Guided Cytidine Deaminase. Yuan J; Ma Y; Huang T; Chen Y; Peng Y; Li B; Li J; Zhang Y; Song B; Sun X; Ding Q; Song Y; Chang X Mol Cell; 2018 Oct; 72(2):380-394.e7. PubMed ID: 30293782 [TBL] [Abstract][Full Text] [Related]
3. CRISPR Base Editing in Induced Pluripotent Stem Cells. Chang YJ; Xu CL; Cui X; Bassuk AG; Mahajan VB; Tsai YT; Tsang SH Methods Mol Biol; 2019; 2045():337-346. PubMed ID: 31250381 [TBL] [Abstract][Full Text] [Related]
4. Molecular correction of Duchenne muscular dystrophy by splice modulation and gene editing. Hanson B; Wood MJA; Roberts TC RNA Biol; 2021 Jul; 18(7):1048-1062. PubMed ID: 33472516 [TBL] [Abstract][Full Text] [Related]
5. Multiplex genome editing using a dCas9-cytidine deaminase fusion in Streptomyces. Zhao Y; Tian J; Zheng G; Chen J; Sun C; Yang Z; Zimin AA; Jiang W; Deng Z; Wang Z; Lu Y Sci China Life Sci; 2020 Jul; 63(7):1053-1062. PubMed ID: 31872379 [TBL] [Abstract][Full Text] [Related]
6. A Single CRISPR-Cas9 Deletion Strategy that Targets the Majority of DMD Patients Restores Dystrophin Function in hiPSC-Derived Muscle Cells. Young CS; Hicks MR; Ermolova NV; Nakano H; Jan M; Younesi S; Karumbayaram S; Kumagai-Cresse C; Wang D; Zack JA; Kohn DB; Nakano A; Nelson SF; Miceli MC; Spencer MJ; Pyle AD Cell Stem Cell; 2016 Apr; 18(4):533-40. PubMed ID: 26877224 [TBL] [Abstract][Full Text] [Related]
7. Targeting specificity of APOBEC-based cytosine base editor in human iPSCs determined by whole genome sequencing. McGrath E; Shin H; Zhang L; Phue JN; Wu WW; Shen RF; Jang YY; Revollo J; Ye Z Nat Commun; 2019 Nov; 10(1):5353. PubMed ID: 31767844 [TBL] [Abstract][Full Text] [Related]
8. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System. Bae SJ; Park BG; Kim BG; Hahn JS Biotechnol J; 2020 Jan; 15(1):e1900238. PubMed ID: 31657874 [TBL] [Abstract][Full Text] [Related]
9. Challenges associated with homologous directed repair using CRISPR-Cas9 and TALEN to edit the DMD genetic mutation in canine Duchenne muscular dystrophy. Mata López S; Balog-Alvarez C; Vitha S; Bettis AK; Canessa EH; Kornegay JN; Nghiem PP PLoS One; 2020; 15(1):e0228072. PubMed ID: 31961902 [TBL] [Abstract][Full Text] [Related]
10. Use of the Representative Base Editing Tool Target-AID to Introduce Pathogenic Mutations into Mice. Sasaguri H Methods Mol Biol; 2023; 2606():87-97. PubMed ID: 36592310 [TBL] [Abstract][Full Text] [Related]
11. Therapeutic Applications of CRISPR/Cas for Duchenne Muscular Dystrophy. Wong TWY; Cohn RD Curr Gene Ther; 2017; 17(4):301-308. PubMed ID: 29173172 [TBL] [Abstract][Full Text] [Related]
12. The Development and Use of Scalable Systems for Studying Aberrant Splicing in SF3B1-Mutant CLL. Murthy T; Paul KV; Minella AC; Pillai MM Methods Mol Biol; 2019; 1881():83-99. PubMed ID: 30350199 [TBL] [Abstract][Full Text] [Related]
13. Highly efficient RNA-guided base editing in rabbit. Liu Z; Chen M; Chen S; Deng J; Song Y; Lai L; Li Z Nat Commun; 2018 Jul; 9(1):2717. PubMed ID: 30006570 [TBL] [Abstract][Full Text] [Related]
14. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in Yu S; Price MA; Wang Y; Liu Y; Guo Y; Ni X; Rosser SJ; Bi C; Wang M ACS Synth Biol; 2020 Jul; 9(7):1781-1789. PubMed ID: 32551562 [TBL] [Abstract][Full Text] [Related]
16. Programmable base editing in zebrafish using a modified CRISPR-Cas9 system. Qin W; Lu X; Lin S Methods; 2018 Nov; 150():19-23. PubMed ID: 30076894 [TBL] [Abstract][Full Text] [Related]
17. A novel human muscle cell model of Duchenne muscular dystrophy created by CRISPR/Cas9 and evaluation of antisense-mediated exon skipping. Shimo T; Hosoki K; Nakatsuji Y; Yokota T; Obika S J Hum Genet; 2018 Mar; 63(3):365-375. PubMed ID: 29339778 [TBL] [Abstract][Full Text] [Related]
18. Precise correction of the dystrophin gene in duchenne muscular dystrophy patient induced pluripotent stem cells by TALEN and CRISPR-Cas9. Li HL; Fujimoto N; Sasakawa N; Shirai S; Ohkame T; Sakuma T; Tanaka M; Amano N; Watanabe A; Sakurai H; Yamamoto T; Yamanaka S; Hotta A Stem Cell Reports; 2015 Jan; 4(1):143-154. PubMed ID: 25434822 [TBL] [Abstract][Full Text] [Related]
19. Improving the Cpf1-mediated base editing system by combining dCas9/dead sgRNA with human APOBEC3A variants. Lian M; Chen F; Huang X; Zhao X; Gou S; Li N; Jin Q; Shi H; Liang Y; Xie J; Ge W; Zhuang Z; Wang J; Ye Y; Yang Y; Wang K; Lai L; Wu H J Genet Genomics; 2021 Jan; 48(1):92-95. PubMed ID: 33504469 [No Abstract] [Full Text] [Related]
20. Decreased YAP activity reduces proliferative ability in human induced pluripotent stem cell of duchenne muscular dystrophy derived cardiomyocytes. Yasutake H; Lee JK; Hashimoto A; Masuyama K; Li J; Kuramoto Y; Higo S; Hikoso S; Hidaka K; Naito AT; Miyagawa S; Sawa Y; Komuro I; Sakata Y Sci Rep; 2021 May; 11(1):10351. PubMed ID: 33990626 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]