These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 33111068)

  • 1. Generation of Inexpensive, Highly Labeled Probes for Fluorescence
    Sharma R; Meister P
    STAR Protoc; 2020 Jun; 1(1):100006. PubMed ID: 33111068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catch-linker + PCR labeling: a simple method to generate fluorescence in situ hybridization probes from yeast artificial chromosomes.
    Shibasaki Y; Maule JC; Devon RS; Slorach EM; Gosden JR; Porteous DJ; Brookes AJ
    PCR Methods Appl; 1995 Feb; 4(4):209-11. PubMed ID: 8574188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of DOP-PCR for amplification and labeling of BAC DNA for FISH.
    Darouich S; Popovici C; Missirian C; Moncla A
    Biotech Histochem; 2012 Feb; 87(2):117-21. PubMed ID: 21314248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Increased FISH efficiency using APC probes generated by direct incorporation of labeled nucleotides by PCR.
    Richard F; Vogt N; Muleris M; Malfoy B; Dutrillaux B
    Cytogenet Cell Genet; 1994; 65(3):169-71. PubMed ID: 8222753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of alphoid DNA probes for fluorescence in situ hybridization (FISH) using the polymerase chain reaction.
    Lengauer C; Dunham I; Featherstone T; Cremer T
    Methods Mol Biol; 1994; 33():51-61. PubMed ID: 7894592
    [No Abstract]   [Full Text] [Related]  

  • 6. Fluorescent in situ hybridization with arbitrarily amplified DNA fragments differentiates carrot (Daucus carota L.) chromosomes.
    Nowicka A; Grzebelus E; Grzebelus D
    Genome; 2012 Mar; 55(3):205-13. PubMed ID: 22360760
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of repetitive sequences from FISH probes using PCR-assisted affinity chromatography.
    Craig JM; Kraus J; Cremer T
    Hum Genet; 1997 Sep; 100(3-4):472-6. PubMed ID: 9272175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved method for generating BAC DNA suitable for FISH.
    Roohi J; Cammer M; Montagna C; Hatchwell E
    Cytogenet Genome Res; 2008; 121(1):7-9. PubMed ID: 18544919
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A high-throughput DNA FISH protocol to visualize genome regions in human cells.
    Finn EH; Misteli T
    STAR Protoc; 2021 Sep; 2(3):100741. PubMed ID: 34458868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence in situ hybridization (FISH) on human chromosomes using photoprobe biotin-labeled probes.
    Weise A; Harbarth P; Claussen U; Liehr T
    J Histochem Cytochem; 2003 Apr; 51(4):549-51. PubMed ID: 12642635
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for preparation and staining of chromosomes isolated from mouse and human tissues for conventional and molecular cytogenetic analysis.
    Binz RL; Burns K; Pathak R
    STAR Protoc; 2024 Mar; 5(1):102897. PubMed ID: 38373079
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interphase fluorescence in situ hybridization is more sensitive than BIOMED-2 polymerase chain reaction protocol in detecting IGH-BCL2 rearrangement in both fixed and frozen lymph node with follicular lymphoma.
    Belaud-Rotureau MA; Parrens M; Carrere N; Turmo M; Ferrer J; de Mascarel A; Dubus P; Merlio JP
    Hum Pathol; 2007 Feb; 38(2):365-72. PubMed ID: 17134735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescent In Situ Hybridization Using Oligonucleotide-Based Probes.
    Braz GT; Yu F; do Vale Martins L; Jiang J
    Methods Mol Biol; 2020; 2148():71-83. PubMed ID: 32394375
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence-independent amplification and labeling of yeast artificial chromosomes for fluorescence in situ hybridization.
    Bohlander SK; Espinosa R; Fernald AA; Rowley JD; Le Beau MM; Díaz MO
    Cytogenet Cell Genet; 1994; 65(1-2):108-10. PubMed ID: 8404060
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polymerase Chain reaction generated probes for fluorescence in situ hybridization.
    Dupont JM; Lebbar A; Dupuy O; Frydman N; Letessier D; Auvinet P; Rabineau D
    Morphologie; 1998; 82(257):21-4. PubMed ID: 11928124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic Force Microscope nanolithography on chromosomes to generate single-cell genetic probes.
    Di Bucchianico S; Poma AM; Giardi MF; Di Leandro L; Valle F; Biscarini F; Botti D
    J Nanobiotechnology; 2011 Jun; 9():27. PubMed ID: 21708050
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microdissection of Drosophila polytene chromosomes for DOP-PCR.
    Dernburg AF
    Cold Spring Harb Protoc; 2012 Mar; 2012(3):376-9. PubMed ID: 22383634
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocol for chromosome-specific probe construction using PRINS, micromanipulation and DOP-PCR techniques.
    Passamani PZ; Carvalho CR; Soares FAF
    An Acad Bras Cienc; 2018; 90(1):41-47. PubMed ID: 29236847
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protocol to detect RNAs from tissue sections in mice using Y-branched probe in situ hybridization.
    Wu Y; Yu CR
    STAR Protoc; 2022 Dec; 3(4):101686. PubMed ID: 36115025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Imaging of Telomerase RNA by Single-Molecule Inexpensive FISH Combined with Immunofluorescence.
    Querido E; Sfeir A; Chartrand P
    STAR Protoc; 2020 Sep; 1(2):100104. PubMed ID: 33111129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.