BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33111072)

  • 1. Chromatin-Bound Proteome Profiling by Genome Capture.
    Aranda S; Borràs E; Sabidó E; Di Croce L
    STAR Protoc; 2020 Jun; 1(1):100014. PubMed ID: 33111072
    [No Abstract]   [Full Text] [Related]  

  • 2. Isolation of Chromatin Proteins by Genome Capture.
    Aranda S; Di Croce L
    Methods Mol Biol; 2023; 2655():91-99. PubMed ID: 37212991
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sucrose gradient chromatin enrichment for quantitative proteomics analysis in budding yeast.
    Challa K; Seebacher J; Gasser SM
    STAR Protoc; 2021 Dec; 2(4):100825. PubMed ID: 34568845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protocol to target a promoter region in human embryonic kidney cells using the CRISPR-dCas9 system for single-locus proteomics.
    Alkhayer R; Ponath V; Pogge von Strandmann E
    STAR Protoc; 2024 Jun; 5(2):103045. PubMed ID: 38691460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The changing chromatome as a driver of disease: A panoramic view from different methodologies.
    Espejo I; Di Croce L; Aranda S
    Bioessays; 2020 Dec; 42(12):e2000203. PubMed ID: 33169398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromatin capture links the metabolic enzyme AHCY to stem cell proliferation.
    Aranda S; Alcaine-Colet A; Blanco E; Borràs E; Caillot C; Sabidó E; Di Croce L
    Sci Adv; 2019 Mar; 5(3):eaav2448. PubMed ID: 30854431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying cytokine signaling signatures in primary human Th-1 cells by phospho-proteomics analysis.
    Martinez-Fabregas J; Pohler E; Moraga I
    STAR Protoc; 2021 Jun; 2(2):100417. PubMed ID: 33870224
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for scChaRM-seq: Simultaneous profiling of gene expression, DNA methylation, and chromatin accessibility in single cells.
    Yan R; Cheng X; Guo F
    STAR Protoc; 2021 Dec; 2(4):100972. PubMed ID: 34849489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantitative profiling of chromatome dynamics reveals a novel role for HP1BP3 in hypoxia-induced oncogenesis.
    Dutta B; Yan R; Lim SK; Tam JP; Sze SK
    Mol Cell Proteomics; 2014 Dec; 13(12):3236-49. PubMed ID: 25100860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for analysis of RNA-sequencing and proteome profiling data for subgroup identification and comparison.
    Yang KC; Gorski SM
    STAR Protoc; 2022 Jun; 3(2):101283. PubMed ID: 35634361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic Analyses of the Eukaryotic Replication Machinery.
    Cortez D
    Methods Enzymol; 2017; 591():33-53. PubMed ID: 28645376
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-proteomics with iterative data analysis: Proteome analysis in C. elegans at the single worm level.
    Bensaddek D; Narayan V; Nicolas A; Murillo AB; Gartner A; Kenyon CJ; Lamond AI
    Proteomics; 2016 Feb; 16(3):381-92. PubMed ID: 26552604
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein analysis on a proteomic scale.
    Phizicky E; Bastiaens PI; Zhu H; Snyder M; Fields S
    Nature; 2003 Mar; 422(6928):208-15. PubMed ID: 12634794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome Characterization of a Chromatin Locus Using the Proteomics of Isolated Chromatin Segments Approach.
    Kan SL; Saksouk N; Déjardin J
    Methods Mol Biol; 2017; 1550():19-33. PubMed ID: 28188520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protocol for global proteome, virome, and metaproteome profiling of respiratory specimen (VTM) in COVID-19 patient by LC-MS/MS-based analysis.
    Tripathi G; Sharma N; Bindal V; Yadav M; Mathew B; Sharma S; Gupta E; Singh Maras J; Sarin SK
    STAR Protoc; 2022 Mar; 3(1):101045. PubMed ID: 34870243
    [TBL] [Abstract][Full Text] [Related]  

  • 16. aniFOUND: analysing the associated proteome and genomic landscape of the repaired nascent non-replicative chromatin.
    Stefos GC; Szantai E; Konstantopoulos D; Samiotaki M; Fousteri M
    Nucleic Acids Res; 2021 Jun; 49(11):e64. PubMed ID: 33693861
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive chromatin proteomics resolves functional phases of pluripotency and identifies changes in regulatory components.
    Ugur E; de la Porte A; Qin W; Bultmann S; Ivanova A; Drukker M; Mann M; Wierer M; Leonhardt H
    Nucleic Acids Res; 2023 Apr; 51(6):2671-2690. PubMed ID: 36806742
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current Analytical Strategies in Studying Chromatin-Associated-Proteome (Chromatome).
    Khan N; Shahid S; Asif AR
    Molecules; 2021 Nov; 26(21):. PubMed ID: 34771102
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Proteomic and phosphoproteomic analyses of chromatin-associated proteins from Arabidopsis thaliana.
    Bigeard J; Rayapuram N; Bonhomme L; Hirt H; Pflieger D
    Proteomics; 2014 Oct; 14(19):2141-55. PubMed ID: 24889360
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteomic profiling of human islets collected from frozen pancreata using laser capture microdissection.
    Zhang L; Lanzoni G; Battarra M; Inverardi L; Zhang Q
    J Proteomics; 2017 Jan; 150():149-159. PubMed ID: 27620696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.