BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 33111115)

  • 21. Whi5 phosphorylation embedded in the G1/S network dynamically controls critical cell size and cell fate.
    Palumbo P; Vanoni M; Cusimano V; Busti S; Marano F; Manes C; Alberghina L
    Nat Commun; 2016 Apr; 7():11372. PubMed ID: 27094800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deregulation of the G1/S-phase transition is the proximal cause of mortality in old yeast mother cells.
    Neurohr GE; Terry RL; Sandikci A; Zou K; Li H; Amon A
    Genes Dev; 2018 Aug; 32(15-16):1075-1084. PubMed ID: 30042134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidics for single-cell lineage tracking over time to characterize transmission of phenotypes in
    Bheda P; Aguilar-Gómez D; Kukhtevich I; Becker J; Charvin G; Kirmizis A; Schneider R
    STAR Protoc; 2020 Dec; 1(3):100228. PubMed ID: 33377118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual regulation by pairs of cyclin-dependent protein kinases and histone deacetylases controls G1 transcription in budding yeast.
    Huang D; Kaluarachchi S; van Dyk D; Friesen H; Sopko R; Ye W; Bastajian N; Moffat J; Sassi H; Costanzo M; Andrews BJ
    PLoS Biol; 2009 Sep; 7(9):e1000188. PubMed ID: 19823668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cell cycle arrest of
    Tartakoff AM
    STAR Protoc; 2021 Sep; 2(3):100646. PubMed ID: 34286287
    [No Abstract]   [Full Text] [Related]  

  • 26. Mitochondria and the cell cycle in budding yeast.
    Leite AC; Costa V; Pereira C
    Int J Biochem Cell Biol; 2023 Aug; 161():106444. PubMed ID: 37419443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Uncovering novel cell cycle players through the inactivation of securin in budding yeast.
    Sarin S; Ross KE; Boucher L; Green Y; Tyers M; Cohen-Fix O
    Genetics; 2004 Nov; 168(3):1763-71. PubMed ID: 15579722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Growth-dependent signals drive an increase in early G1 cyclin concentration to link cell cycle entry with cell growth.
    Sommer RA; DeWitt JT; Tan R; Kellogg DR
    Elife; 2021 Oct; 10():. PubMed ID: 34713806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The F-box protein Met30 is required for multiple steps in the budding yeast cell cycle.
    Su NY; Flick K; Kaiser P
    Mol Cell Biol; 2005 May; 25(10):3875-85. PubMed ID: 15870262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The SBF- and MBF-associated protein Msa1 is required for proper timing of G1-specific transcription in Saccharomyces cerevisiae.
    Ashe M; de Bruin RA; Kalashnikova T; McDonald WH; Yates JR; Wittenberg C
    J Biol Chem; 2008 Mar; 283(10):6040-9. PubMed ID: 18160399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Unexpected complexity of the budding yeast transcriptome.
    Ito T; Miura F; Onda M
    IUBMB Life; 2008 Dec; 60(12):775-81. PubMed ID: 18649367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential Scaling of Gene Expression with Cell Size May Explain Size Control in Budding Yeast.
    Chen Y; Zhao G; Zahumensky J; Honey S; Futcher B
    Mol Cell; 2020 Apr; 78(2):359-370.e6. PubMed ID: 32246903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of septin organization and function in yeast.
    Longtine MS; Bi E
    Trends Cell Biol; 2003 Aug; 13(8):403-9. PubMed ID: 12888292
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enrichment of aging yeast cells and budding polarity assay in
    Yang EJ; Pon LA
    STAR Protoc; 2022 Sep; 3(3):101599. PubMed ID: 35928001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Absolute quantification of the budding yeast transcriptome by means of competitive PCR between genomic and complementary DNAs.
    Miura F; Kawaguchi N; Yoshida M; Uematsu C; Kito K; Sakaki Y; Ito T
    BMC Genomics; 2008 Nov; 9():574. PubMed ID: 19040753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasing population growth by asymmetric segregation of a limiting resource during cell division.
    Avraham N; Soifer I; Carmi M; Barkai N
    Mol Syst Biol; 2013 Apr; 9():656. PubMed ID: 23591772
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A model of yeast cell-cycle regulation based on multisite phosphorylation.
    Barik D; Baumann WT; Paul MR; Novak B; Tyson JJ
    Mol Syst Biol; 2010 Aug; 6():405. PubMed ID: 20739927
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The yeast Ess1 prolyl isomerase controls Swi6 and Whi5 nuclear localization.
    Atencio D; Barnes C; Duncan TM; Willis IM; Hanes SD
    G3 (Bethesda); 2014 Mar; 4(3):523-37. PubMed ID: 24470217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The regulators of yeast PHO system participate in the transcriptional regulation of G1 cyclin under alkaline stress conditions.
    Nishizawa M
    Yeast; 2015 Mar; 32(3):367-78. PubMed ID: 25582350
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Functional overlap among distinct G1/S inhibitory pathways allows robust G1 arrest by yeast mating pheromones.
    Pope PA; Pryciak PM
    Mol Biol Cell; 2013 Dec; 24(23):3675-88. PubMed ID: 24088572
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.