BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 33111208)

  • 21. The aging proteostasis decline: From nematode to human.
    Meller A; Shalgi R
    Exp Cell Res; 2021 Feb; 399(2):112474. PubMed ID: 33434530
    [TBL] [Abstract][Full Text] [Related]  

  • 22. TRIM family proteins: roles in proteostasis and neurodegenerative diseases.
    Zhu Y; Afolabi LO; Wan X; Shim JS; Chen L
    Open Biol; 2022 Aug; 12(8):220098. PubMed ID: 35946309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular Protein Aggregates: Formation, Biological Effects, and Ways of Elimination.
    Wen JH; He XH; Feng ZS; Li DY; Tang JX; Liu HF
    Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37239937
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Minocycline treatment improves proteostasis during Drosophila aging via autophagy mediated by FOXO and Hsp70.
    Lim JJ; Hyun S
    Biomed Pharmacother; 2022 May; 149():112803. PubMed ID: 35286967
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lipid Assemblies at the Crossroads of Aging, Proteostasis, and Neurodegeneration.
    Roitenberg N; Cohen E
    Trends Cell Biol; 2019 Dec; 29(12):954-963. PubMed ID: 31669295
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Loss of miR-34 in Drosophila dysregulates protein translation and protein turnover in the aging brain.
    Srinivasan AR; Tran TT; Bonini NM
    Aging Cell; 2022 Mar; 21(3):e13559. PubMed ID: 35166006
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Contribution of proteases to the hallmarks of aging and to age-related neurodegeneration.
    Rai M; Curley M; Coleman Z; Demontis F
    Aging Cell; 2022 May; 21(5):e13603. PubMed ID: 35349763
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ubiquitin-dependent and independent roles of SUMO in proteostasis.
    Liebelt F; Vertegaal AC
    Am J Physiol Cell Physiol; 2016 Aug; 311(2):C284-96. PubMed ID: 27335169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Proteasome dysfunction induces excessive proteome instability and loss of mitostasis that can be mitigated by enhancing mitochondrial fusion or autophagy.
    Tsakiri EN; Gumeni S; Vougas K; Pendin D; Papassideri I; Daga A; Gorgoulis V; Juhász G; Scorrano L; Trougakos IP
    Autophagy; 2019 Oct; 15(10):1757-1773. PubMed ID: 31002009
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Proteostasis and the aging proteome in health and disease.
    Morimoto RI; Cuervo AM
    J Gerontol A Biol Sci Med Sci; 2014 Jun; 69 Suppl 1(Suppl 1):S33-8. PubMed ID: 24833584
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Connecting chaperone-mediated autophagy dysfunction to cellular senescence.
    Moreno-Blas D; Gorostieta-Salas E; Castro-Obregón S
    Ageing Res Rev; 2018 Jan; 41():34-41. PubMed ID: 29113832
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Role of molecular chaperones in neurodegenerative disorders.
    Meriin AB; Sherman MY
    Int J Hyperthermia; 2005 Aug; 21(5):403-19. PubMed ID: 16048838
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The linear ubiquitin E3 ligase-Relish pathway is involved in the regulation of proteostasis in Drosophila muscle during aging.
    Lee B; Shin C; Shin M; Choi B; Yuan C; Cho KS
    Biochem Biophys Res Commun; 2021 Apr; 550():184-190. PubMed ID: 33706102
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mitochondrial protein import regulates cytosolic protein homeostasis and neuronal integrity.
    Liu W; Duan X; Fang X; Shang W; Tong C
    Autophagy; 2018; 14(8):1293-1309. PubMed ID: 29909722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Insights Into the Links Between Proteostasis and Aging From
    Zhang WH; Koyuncu S; Vilchez D
    Front Aging; 2022; 3():854157. PubMed ID: 35821832
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distinct proteostasis circuits cooperate in nuclear and cytoplasmic protein quality control.
    Samant RS; Livingston CM; Sontag EM; Frydman J
    Nature; 2018 Nov; 563(7731):407-411. PubMed ID: 30429547
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model systems of protein-misfolding diseases reveal chaperone modifiers of proteotoxicity.
    Brehme M; Voisine C
    Dis Model Mech; 2016 Aug; 9(8):823-38. PubMed ID: 27491084
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Protein homeostasis and aging in neurodegeneration.
    Douglas PM; Dillin A
    J Cell Biol; 2010 Sep; 190(5):719-29. PubMed ID: 20819932
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein aggregates and proteostasis in aging: Amylin and β-cell function.
    Press M; Jung T; König J; Grune T; Höhn A
    Mech Ageing Dev; 2019 Jan; 177():46-54. PubMed ID: 29580826
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Therapeutic targeting of mitochondria-proteostasis axis by antioxidant polysaccharides in neurodegeneration.
    Wang Q; Adil MZ; Xie X; Zhao S; Zhang J; Huang Z
    Adv Protein Chem Struct Biol; 2023; 136():385-413. PubMed ID: 37437985
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.