BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 33111314)

  • 1. Characterizing the effect of substrate stiffness on the extravasation potential of breast cancer cells using a 3D microfluidic model.
    Azadi S; Tafazzoli Shadpour M; Warkiani ME
    Biotechnol Bioeng; 2021 Feb; 118(2):823-835. PubMed ID: 33111314
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Upregulation of PD-L1 expression in breast cancer cells through the formation of 3D multicellular cancer aggregates under different chemical and mechanical conditions.
    Azadi S; Aboulkheyr Es H; Razavi Bazaz S; Thiery JP; Asadnia M; Ebrahimi Warkiani M
    Biochim Biophys Acta Mol Cell Res; 2019 Dec; 1866(12):118526. PubMed ID: 31398408
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic 3D in vitro model for specificity of breast cancer metastasis to bone.
    Bersini S; Jeon JS; Dubini G; Arrigoni C; Chung S; Charest JL; Moretti M; Kamm RD
    Biomaterials; 2014 Mar; 35(8):2454-61. PubMed ID: 24388382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-chip determination of tissue-specific metastatic potential of breast cancer cells.
    Firatligil-Yildirir B; Bati-Ayaz G; Tahmaz I; Bilgen M; Pesen-Okvur D; Yalcin-Ozuysal O
    Biotechnol Bioeng; 2021 Oct; 118(10):3799-3810. PubMed ID: 34110014
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microfluidic platform for studying osteocyte mechanoregulation of breast cancer bone metastasis.
    Mei X; Middleton K; Shim D; Wan Q; Xu L; Ma YV; Devadas D; Walji N; Wang L; Young EWK; You L
    Integr Biol (Camb); 2019 Apr; 11(4):119-129. PubMed ID: 31125041
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Organotypic microfluidic breast cancer model reveals starvation-induced spatial-temporal metabolic adaptations.
    Ayuso JM; Gillette A; Lugo-Cintrón K; Acevedo-Acevedo S; Gomez I; Morgan M; Heaster T; Wisinski KB; Palecek SP; Skala MC; Beebe DJ
    EBioMedicine; 2018 Nov; 37():144-157. PubMed ID: 30482722
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Less is more: low expression of MT1-MMP is optimal to promote migration and tumourigenesis of breast cancer cells.
    Cepeda MA; Pelling JJ; Evered CL; Williams KC; Freedman Z; Stan I; Willson JA; Leong HS; Damjanovski S
    Mol Cancer; 2016 Oct; 15(1):65. PubMed ID: 27756325
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anti-angiogenesis therapy and gap junction inhibition reduce MDA-MB-231 breast cancer cell invasion and metastasis in vitro and in vivo.
    Zibara K; Awada Z; Dib L; El-Saghir J; Al-Ghadban S; Ibrik A; El-Zein N; El-Sabban M
    Sci Rep; 2015 Jul; 5():12598. PubMed ID: 26218768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-step microfluidic device for studying cancer metastasis.
    Chaw KC; Manimaran M; Tay EH; Swaminathan S
    Lab Chip; 2007 Aug; 7(8):1041-7. PubMed ID: 17653347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human 3D vascularized organotypic microfluidic assays to study breast cancer cell extravasation.
    Jeon JS; Bersini S; Gilardi M; Dubini G; Charest JL; Moretti M; Kamm RD
    Proc Natl Acad Sci U S A; 2015 Jan; 112(1):214-9. PubMed ID: 25524628
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microfluidic Tumor-Vascular Model to Study Breast Cancer Cell Invasion and Intravasation.
    Nagaraju S; Truong D; Mouneimne G; Nikkhah M
    Adv Healthc Mater; 2018 May; 7(9):e1701257. PubMed ID: 29334196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic 3D Clusters Using Human Adipose Derived Mesenchymal Stem Cells and Breast Cancer Cells: A Study on Migration and Invasion of Breast Cancer Cells.
    Park MH; Song B; Hong S; Kim SH; Lee K
    Mol Pharm; 2016 Jul; 13(7):2204-13. PubMed ID: 27163860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A combined microfluidic-transcriptomic approach to characterize the extravasation potential of cancer cells.
    Bersini S; Miermont A; Pavesi A; Kamm RD; Thiery JP; Moretti M; Adriani G
    Oncotarget; 2018 Nov; 9(90):36110-36125. PubMed ID: 30546831
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A SERS-assisted 3D organotypic microfluidic chip for in-situ visualization and monitoring breast cancer extravasation process.
    Qian Z; Wang Z; Zhu K; Yang K; Wu L; Zong S; Wang Z
    Talanta; 2024 Apr; 270():125633. PubMed ID: 38199123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Migration dynamics of breast cancer cells in a tunable 3D interstitial flow chamber.
    Haessler U; Teo JC; Foretay D; Renaud P; Swartz MA
    Integr Biol (Camb); 2012 Apr; 4(4):401-9. PubMed ID: 22143066
    [TBL] [Abstract][Full Text] [Related]  

  • 16. PO-12 - The key role of talin-1 in cancer cell extravasation dissected through human vascularized 3D microfluidic model.
    Gilardi M; Bersini S; Calleja AB; Kamm RD; Vanoni M; Moretti M
    Thromb Res; 2016 Apr; 140 Suppl 1():S180-1. PubMed ID: 27161700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 3D microvascular network model to study the impact of hypoxia on the extravasation potential of breast cell lines.
    Song J; Miermont A; Lim CT; Kamm RD
    Sci Rep; 2018 Dec; 8(1):17949. PubMed ID: 30560881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of TOPK in lipopolysaccharide-induced breast cancer cell migration and invasion.
    Seol MA; Park JH; Jeong JH; Lyu J; Han SY; Oh SM
    Oncotarget; 2017 Jun; 8(25):40190-40203. PubMed ID: 28212583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integration of intra- and extravasation in one cell-based microfluidic chip for the study of cancer metastasis.
    Shin MK; Kim SK; Jung H
    Lab Chip; 2011 Nov; 11(22):3880-7. PubMed ID: 21975823
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid collagen alginate hydrogel as a platform for 3D tumor spheroid invasion.
    Liu C; Lewin Mejia D; Chiang B; Luker KE; Luker GD
    Acta Biomater; 2018 Jul; 75():213-225. PubMed ID: 29879553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.