These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
291 related articles for article (PubMed ID: 33111316)
1. Climate change alters plant-herbivore interactions. Hamann E; Blevins C; Franks SJ; Jameel MI; Anderson JT New Phytol; 2021 Feb; 229(4):1894-1910. PubMed ID: 33111316 [TBL] [Abstract][Full Text] [Related]
2. Combined effects of extreme climatic events and elevation on nutritional quality and herbivory of Alpine plants. Leingärtner A; Hoiss B; Krauss J; Steffan-Dewenter I PLoS One; 2014; 9(4):e93881. PubMed ID: 24705715 [TBL] [Abstract][Full Text] [Related]
3. Is There a Temperate Bias in Our Understanding of How Climate Change Will Alter Plant-Herbivore Interactions? A Meta-analysis of Experimental Studies. Mundim FM; Bruna EM Am Nat; 2016 Sep; 188 Suppl 1():S74-89. PubMed ID: 27513912 [TBL] [Abstract][Full Text] [Related]
4. Drought alters interactions between root and foliar herbivores. Tariq M; Rossiter JT; Wright DJ; Staley JT Oecologia; 2013 Aug; 172(4):1095-104. PubMed ID: 23292454 [TBL] [Abstract][Full Text] [Related]
5. Insect herbivory in a mature Eucalyptus woodland canopy depends on leaf phenology but not CO Gherlenda AN; Moore BD; Haigh AM; Johnson SN; Riegler M BMC Ecol; 2016 Oct; 16(1):47. PubMed ID: 27760541 [TBL] [Abstract][Full Text] [Related]
6. Responses of plant phenology, growth, defense, and reproduction to interactive effects of warming and insect herbivory. Lemoine NP; Doublet D; Salminen JP; Burkepile DE; Parker JD Ecology; 2017 Jul; 98(7):1817-1828. PubMed ID: 28403543 [TBL] [Abstract][Full Text] [Related]
7. Ontogeny-dependent effects of elevated CO Park HJ; Nam BE; Lee G; Kim SG; Joo Y; Kim JG Sci Total Environ; 2022 Sep; 838(Pt 2):156065. PubMed ID: 35597357 [TBL] [Abstract][Full Text] [Related]
8. Phylogenetic relatedness of food plants reveals highest insect herbivore specialization at intermediate temperatures along a broad climatic gradient. König S; Krauss J; Keller A; Bofinger L; Steffan-Dewenter I Glob Chang Biol; 2022 Jul; 28(13):4027-4040. PubMed ID: 35429201 [TBL] [Abstract][Full Text] [Related]
9. Plant-mediated and nonadditive effects of two global change drivers on an insect herbivore community. de Sassi C; Lewis OT; Tylianakis JM Ecology; 2012 Aug; 93(8):1892-901. PubMed ID: 22928417 [TBL] [Abstract][Full Text] [Related]
10. How do herbivorous insects respond to drought stress in trees? Gely C; Laurance SGW; Stork NE Biol Rev Camb Philos Soc; 2020 Apr; 95(2):434-448. PubMed ID: 31750622 [TBL] [Abstract][Full Text] [Related]
11. Reduced host plant growth and increased tyrosine-derived secondary metabolites under climate change and negative consequences on its specialist herbivore. Park HJ; Nam BE; Moon SY; Kim SG; Joo Y; Kim JG Sci Total Environ; 2021 Mar; 759():143507. PubMed ID: 33223185 [TBL] [Abstract][Full Text] [Related]
12. Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Rich WA; Schubert N; Schläpfer N; Carvalho VF; Horta ACL; Horta PA Mar Environ Res; 2018 Nov; 142():100-107. PubMed ID: 30293660 [TBL] [Abstract][Full Text] [Related]
13. Phenological sensitivity to temperature mediates herbivory. Meineke EK; Davis CC; Davies TJ Glob Chang Biol; 2021 Jun; 27(11):2315-2327. PubMed ID: 33735502 [TBL] [Abstract][Full Text] [Related]
14. Interactive effects of pre-industrial, current and future [CO2] and temperature on an insect herbivore of Eucalyptus. Murray TJ; Tissue DT; Ellsworth DS; Riegler M Oecologia; 2013 Apr; 171(4):1025-35. PubMed ID: 23053228 [TBL] [Abstract][Full Text] [Related]
15. Asymmetric Responses to Climate Change: Temperature Differentially Alters Herbivore Salivary Elicitor and Host Plant Responses to Herbivory. Paudel S; Lin PA; Hoover K; Felton GW; Rajotte EG J Chem Ecol; 2020 Sep; 46(9):891-905. PubMed ID: 32700062 [TBL] [Abstract][Full Text] [Related]
16. Museum specimens provide novel insights into changing plant-herbivore interactions. Meineke EK; Davies TJ Philos Trans R Soc Lond B Biol Sci; 2018 Nov; 374(1763):. PubMed ID: 30455211 [TBL] [Abstract][Full Text] [Related]
17. Macroevolutionary constraints to tolerance: trade-offs with drought tolerance and phenology, but not resistance. Pearse IS; Aguilar J; Schroder J; Strauss SY Ecology; 2017 Nov; 98(11):2758-2772. PubMed ID: 28836270 [TBL] [Abstract][Full Text] [Related]
18. Drought negates growth stimulation due to root herbivory in pasture grasses. Barnett KL; Johnson SN; Power SA Oecologia; 2018 Nov; 188(3):777-789. PubMed ID: 30099604 [TBL] [Abstract][Full Text] [Related]
19. Combined effects of environmental disturbance and climate warming on insect herbivory in mountain birch in subarctic forests: Results of 26-year monitoring. Kozlov MV; Zverev V; Zvereva EL Sci Total Environ; 2017 Dec; 601-602():802-811. PubMed ID: 28578238 [TBL] [Abstract][Full Text] [Related]
20. Interactive direct and plant-mediated effects of elevated atmospheric [CO2 ] and temperature on a eucalypt-feeding insect herbivore. Murray TJ; Ellsworth DS; Tissue DT; Riegler M Glob Chang Biol; 2013 May; 19(5):1407-16. PubMed ID: 23504696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]