These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 3311145)
1. Swallowing food without chewing; a simple way to reduce postprandial glycaemia. Read NW; Welch IM; Austen CJ; Barnish C; Bartlett CE; Baxter AJ; Brown G; Compton ME; Hume KE; Storie I Br J Nutr; 1986 Jan; 55(1):43-7. PubMed ID: 3311145 [TBL] [Abstract][Full Text] [Related]
2. The impact of eating methods on eating rate and glycemic response in healthy adults. Sun L; Ranawana DV; Tan WJ; Quek YC; Henry CJ Physiol Behav; 2015 Feb; 139():505-10. PubMed ID: 25484351 [TBL] [Abstract][Full Text] [Related]
3. Morning Mastication Enhances Postprandial Glucose Metabolism in Healthy Young Subjects. Sato A; Ohtsuka Y; Yamanaka Y Tohoku J Exp Med; 2019 Nov; 249(3):193-201. PubMed ID: 31761819 [TBL] [Abstract][Full Text] [Related]
4. Thorough Mastication Prior to Swallowing Increases Postprandial Satiety and the Thermic Effect of a Meal in Young Women. Komai N; Motokubota N; Suzuki M; Hayashi I; Moritani T; Nagai N J Nutr Sci Vitaminol (Tokyo); 2016; 62(5):288-294. PubMed ID: 27928114 [TBL] [Abstract][Full Text] [Related]
5. Mastication effects on the glycaemic index: impact on variability and practical implications. Ranawana V; Leow MK; Henry CJ Eur J Clin Nutr; 2014 Jan; 68(1):137-9. PubMed ID: 24219890 [TBL] [Abstract][Full Text] [Related]
6. Glucose-dependent insulinotropic polypeptide and insulin-like immunoreactivity in saliva following sham-fed and swallowed meals. Messenger B; Clifford MN; Morgan LM J Endocrinol; 2003 Jun; 177(3):407-12. PubMed ID: 12773121 [TBL] [Abstract][Full Text] [Related]
7. The role of digestive factors in determining glycemic response in a multiethnic Asian population. Tan VM; Ooi DS; Kapur J; Wu T; Chan YH; Henry CJ; Lee YS Eur J Nutr; 2016 Jun; 55(4):1573-81. PubMed ID: 26160548 [TBL] [Abstract][Full Text] [Related]
8. Influence of oral processing behaviour and bolus properties of brown rice and chickpeas on in vitro starch digestion and postprandial glycaemic response. Chen Y; Stieger M; Capuano E; Forde CG; van der Haar S; Ummels M; van den Bosch H; de Wijk R Eur J Nutr; 2022 Dec; 61(8):3961-3974. PubMed ID: 35773354 [TBL] [Abstract][Full Text] [Related]
9. Postprandial carbohydrate metabolism in healthy subjects and those with type 2 diabetes fed starches with slow and rapid hydrolysis rates determined in vitro. Seal CJ; Daly ME; Thomas LC; Bal W; Birkett AM; Jeffcoat R; Mathers JC Br J Nutr; 2003 Nov; 90(5):853-64. PubMed ID: 14667179 [TBL] [Abstract][Full Text] [Related]
10. Effect of co-ingestion of amino acids with rice on glycaemic and insulinaemic response. Soong YY; Lim J; Sun L; Henry CJ Br J Nutr; 2015 Dec; 114(11):1845-51. PubMed ID: 26420496 [TBL] [Abstract][Full Text] [Related]
11. Increasing the number of masticatory cycles is associated with reduced appetite and altered postprandial plasma concentrations of gut hormones, insulin and glucose. Zhu Y; Hsu WH; Hollis JH Br J Nutr; 2013 Jul; 110(2):384-90. PubMed ID: 23181989 [TBL] [Abstract][Full Text] [Related]
12. Influence of food volume per mouthful on chewing and bolus properties. Goto T; Nakamich A; Watanabe M; Nagao K; Matsuyama M; Ichikawa T Physiol Behav; 2015 Mar; 141():58-62. PubMed ID: 25582518 [TBL] [Abstract][Full Text] [Related]
13. Interrelationships among postprandial satiety, glucose and insulin responses and changes in subsequent food intake. Holt SH; Brand Miller JC; Petocz P Eur J Clin Nutr; 1996 Dec; 50(12):788-97. PubMed ID: 8968699 [TBL] [Abstract][Full Text] [Related]
14. Modulation of postprandial glycaemia and insulinaemia by pectin in mixed nutrient combinations. Siddhu A; Sud S; Bijlani RL; Karmarkar MG; Nayar U Indian J Physiol Pharmacol; 1989; 33(2):77-83. PubMed ID: 2674012 [TBL] [Abstract][Full Text] [Related]
15. Effects of consumption of main and side dishes with white rice on postprandial glucose, insulin, glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 responses in healthy Japanese men. Kameyama N; Maruyama C; Matsui S; Araki R; Yamada Y; Maruyama T Br J Nutr; 2014 May; 111(9):1632-40. PubMed ID: 24507870 [TBL] [Abstract][Full Text] [Related]
16. Postprandial glycaemic and insulinaemic responses to GM-resistant starch-enriched rice and the production of fermentation-related H2 in healthy Chinese adults. Li M; Piao JH; Tian Y; Li WD; Li KJ; Yang XG Br J Nutr; 2010 Apr; 103(7):1029-34. PubMed ID: 19930763 [TBL] [Abstract][Full Text] [Related]
17. Particle size of solid food after human mastication and in vitro simulation of oral breakdown. Hoebler C; Devaux MF; Karinthi A; Belleville C; Barry JL Int J Food Sci Nutr; 2000 Sep; 51(5):353-66. PubMed ID: 11103300 [TBL] [Abstract][Full Text] [Related]
18. Glycaemic and insulinaemic indices of Mexican foods high in complex carbohydrates. Noriega E; Rivera L; Peralta E Diabetes Nutr Metab; 2000 Feb; 13(1):13-9. PubMed ID: 10824718 [TBL] [Abstract][Full Text] [Related]
19. Glycaemic and insulinaemic responses to natural foods, frozen foods and their laboratory equivalents. Kanan W; Bijlani RL; Sachdeva U; Mahapatra SC; Shah P; Karmarkar MG Indian J Physiol Pharmacol; 1998 Jan; 42(1):81-9. PubMed ID: 9513797 [TBL] [Abstract][Full Text] [Related]
20. Protein and fat modify the glycaemic and insulinaemic responses to a mashed potato-based meal. Hätönen KA; Virtamo J; Eriksson JG; Sinkko HK; Sundvall JE; Valsta LM Br J Nutr; 2011 Jul; 106(2):248-53. PubMed ID: 21338539 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]