These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 33111554)

  • 1. Cell biophysical stimuli in lobopodium formation: a computer based approach.
    Serrano-Alcalde F; García-Aznar JM; Gómez-Benito MJ
    Comput Methods Biomech Biomed Engin; 2021 Apr; 24(5):496-505. PubMed ID: 33111554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational estimates of mechanical constraints on cell migration through the extracellular matrix.
    Maxian O; Mogilner A; Strychalski W
    PLoS Comput Biol; 2020 Aug; 16(8):e1008160. PubMed ID: 32853248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Are the Effects of Independent Biophysical Factors Linearly Additive? A 3D Tumor Migration Model.
    Li A; Sun M; Spill F; Sun R; Zaman MH
    Biophys J; 2019 Nov; 117(9):1702-1713. PubMed ID: 31630809
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The matrix environmental and cell mechanical properties regulate cell migration and contribute to the invasive phenotype of cancer cells.
    Mierke CT
    Rep Prog Phys; 2019 Jun; 82(6):064602. PubMed ID: 30947151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A mechanobiological model to study upstream cell migration guided by tensotaxis.
    Rosalem GS; Las Casas EB; Lima TP; González-Torres LA
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1537-1549. PubMed ID: 32006123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational model for cell migration in three-dimensional matrices.
    Zaman MH; Kamm RD; Matsudaira P; Lauffenburger DA
    Biophys J; 2005 Aug; 89(2):1389-97. PubMed ID: 15908579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating focal adhesion dynamics, cytoskeleton remodeling, and actin motor activity for predicting cell migration on 3D curved surfaces of the extracellular matrix.
    Kim MC; Kim C; Wood L; Neal D; Kamm RD; Asada HH
    Integr Biol (Camb); 2012 Nov; 4(11):1386-97. PubMed ID: 22990282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the influence of nucleus elasticity on cell invasion in fiber networks and microchannels.
    Scianna M; Preziosi L
    J Theor Biol; 2013 Jan; 317():394-406. PubMed ID: 23147234
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Generation of compartmentalized pressure by a nuclear piston governs cell motility in a 3D matrix.
    Petrie RJ; Koo H; Yamada KM
    Science; 2014 Aug; 345(6200):1062-5. PubMed ID: 25170155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Impact of Elastic Deformations of the Extracellular Matrix on Cell Migration.
    Malik AA; Wennberg B; Gerlee P
    Bull Math Biol; 2020 Apr; 82(4):49. PubMed ID: 32248312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extracellular matrix stiffness and architecture govern intracellular rheology in cancer.
    Baker EL; Bonnecaze RT; Zaman MH
    Biophys J; 2009 Aug; 97(4):1013-21. PubMed ID: 19686648
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of cell migration mechanical strategies in three-dimensional matrices: a computational study.
    Zhu J; Mogilner A
    Interface Focus; 2016 Oct; 6(5):20160040. PubMed ID: 27708764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cell Invasion Dynamics into a Three Dimensional Extracellular Matrix Fibre Network.
    Kim MC; Whisler J; Silberberg YR; Kamm RD; Asada HH
    PLoS Comput Biol; 2015 Oct; 11(10):e1004535. PubMed ID: 26436883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Cellular Potts Model simulating cell migration on and in matrix environments.
    Scianna M; Preziosi L; Wolf K
    Math Biosci Eng; 2013 Feb; 10(1):235-61. PubMed ID: 23311371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanotransduction in endothelial cell migration.
    Li S; Huang NF; Hsu S
    J Cell Biochem; 2005 Dec; 96(6):1110-26. PubMed ID: 16167340
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanotransduction Dynamics at the Cell-Matrix Interface.
    Weinberg SH; Mair DB; Lemmon CA
    Biophys J; 2017 May; 112(9):1962-1974. PubMed ID: 28494966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predictive assembling model reveals the self-adaptive elastic properties of lamellipodial actin networks for cell migration.
    Chen X; Zhu H; Feng X; Li X; Lu Y; Wang Z; Rezgui Y
    Commun Biol; 2020 Oct; 3(1):616. PubMed ID: 33106551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The emergence of extracellular matrix mechanics and cell traction forces as important regulators of cellular self-organization.
    Checa S; Rausch MK; Petersen A; Kuhl E; Duda GN
    Biomech Model Mechanobiol; 2015 Jan; 14(1):1-13. PubMed ID: 24718853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling of adhesion, protrusion, and contraction coordination for cell migration simulations.
    Sakamoto Y; Prudhomme S; Zaman MH
    J Math Biol; 2014 Jan; 68(1-2):267-302. PubMed ID: 23263301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling and predictions of biphasic mechanosensitive cell migration altered by cell-intrinsic properties and matrix confinement.
    Pathak A
    Phys Biol; 2018 Jun; 15(6):065001. PubMed ID: 29648543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.