BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 3311158)

  • 21. Interspecific luciferase beta subunit hybrids between Vibrio harveyi, Vibrio fischeri and Photobacterium leiognathi.
    Almashanu S; Gendler I; Hadar R; Kuhn J
    Protein Eng; 1996 Sep; 9(9):803-9. PubMed ID: 8888147
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fused bacterial luciferase subunits catalyze light emission in eukaryotes and prokaryotes.
    Boylan M; Pelletier J; Meighen EA
    J Biol Chem; 1989 Feb; 264(4):1915-8. PubMed ID: 2644245
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PCR based gene engineering of the Vibrio harveyi lux operon and the Escherichia coli trp operon provides for biochemically functional native and fused gene products.
    Hill PJ; Swift S; Stewart GS
    Mol Gen Genet; 1991 Apr; 226(1-2):41-8. PubMed ID: 2034229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular generation of superoxide as a by-product of Vibrio harveyi luciferase expressed in Escherichia coli.
    González-Flecha B; Demple B
    J Bacteriol; 1994 Apr; 176(8):2293-9. PubMed ID: 8157597
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Formation of active bacterial luciferase between interspecific subunits in vivo.
    Almashanu S; Tuby A; Hadar R; Einy R; Kuhn J
    J Biolumin Chemilumin; 1995; 10(3):157-67. PubMed ID: 7676858
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nucleotide sequence of the luxB gene of Vibrio harveyi and the complete amino acid sequence of the beta subunit of bacterial luciferase.
    Johnston TC; Thompson RB; Baldwin TO
    J Biol Chem; 1986 Apr; 261(11):4805-11. PubMed ID: 3514602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Generation of thermostable monomeric luciferases from Photorhabdus luminescens.
    Westerlund-Karlsson A; Saviranta P; Karp M
    Biochem Biophys Res Commun; 2002 Sep; 296(5):1072-6. PubMed ID: 12207882
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a recombinant bifunctional enzyme, galactose dehydrogenase/bacterial luciferase, displaying an improved bioluminescence in a three-enzyme system.
    Lindbladh C; Persson M; Bülow L; Mosbach K
    Eur J Biochem; 1992 Feb; 204(1):241-7. PubMed ID: 1740135
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Construction and characterization of hybrid luciferases coded by lux genes from Xenorhabdus luminescens and Vibrio fischeri.
    Xi L; Tu SC
    Photochem Photobiol; 1993 Apr; 57(4):714-9. PubMed ID: 8506400
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Covalent structure of subunits of bacterial luciferase: NH2-terminal sequence demonstrates subunit homology.
    Baldwin TO; Ziegler MM; Powers DA
    Proc Natl Acad Sci U S A; 1979 Oct; 76(10):4887-9. PubMed ID: 315557
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure of the beta 2 homodimer of bacterial luciferase from Vibrio harveyi: X-ray analysis of a kinetic protein folding trap.
    Thoden JB; Holden HM; Fisher AJ; Sinclair JF; Wesenberg G; Baldwin TO; Rayment I
    Protein Sci; 1997 Jan; 6(1):13-23. PubMed ID: 9007973
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Complementation of subunits from different bacterial luciferases. Evidence for the role of the beta subunit in the bioluminescent mechanism.
    Meighen EA; Bartlet I
    J Biol Chem; 1980 Dec; 255(23):11181-7. PubMed ID: 6969259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Thermostability of bacterial luciferase expressed in different microbes.
    Mackey BM; Cross D; Park SF
    J Appl Bacteriol; 1994 Aug; 77(2):149-54. PubMed ID: 7961187
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium.
    Szittner R; Meighen E
    J Biol Chem; 1990 Sep; 265(27):16581-7. PubMed ID: 2204626
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation of a genetically fused protein A/luciferase conjugate for use in bioluminescent immunoassays.
    Lindbladh C; Mosbach K; Bülow L
    J Immunol Methods; 1991 Mar; 137(2):199-207. PubMed ID: 2013697
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional structure of bacterial luciferase from Vibrio harveyi at 2.4 A resolution.
    Fisher AJ; Raushel FM; Baldwin TO; Rayment I
    Biochemistry; 1995 May; 34(20):6581-6. PubMed ID: 7756289
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases.
    Valkova N; Szittner R; Meighen EA
    Biochemistry; 1999 Oct; 38(42):13820-8. PubMed ID: 10529227
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A simple and sensitive in vivo luciferase assay for tRNA-mediated nonsense suppression.
    Schultz DW; Yarus M
    J Bacteriol; 1990 Feb; 172(2):595-602. PubMed ID: 2105299
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bacterial bioluminescence: isolation and expression of the luciferase genes from Vibrio harveyi.
    Belas R; Mileham A; Cohn D; Hilman M; Simon M; Silverman M
    Science; 1982 Nov; 218(4574):791-3. PubMed ID: 10636771
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of cotranslational folding to the rate of formation of native protein structure.
    Fedorov AN; Baldwin TO
    Proc Natl Acad Sci U S A; 1995 Feb; 92(4):1227-31. PubMed ID: 7862665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.