BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 33111609)

  • 1. Structural dynamics govern substrate recruitment and catalytic turnover in H/ACA RNP pseudouridylation.
    Schmidt A; Hanspach G; Hengesbach M
    RNA Biol; 2021 Sep; 18(9):1300-1309. PubMed ID: 33111609
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efficient RNA pseudouridylation by eukaryotic H/ACA ribonucleoproteins requires high affinity binding and correct positioning of guide RNA.
    Caton EA; Kelly EK; Kamalampeta R; Kothe U
    Nucleic Acids Res; 2018 Jan; 46(2):905-916. PubMed ID: 29177505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Eukaryote specific RNA and protein features facilitate assembly and catalysis of H/ACA snoRNPs.
    Trucks S; Hanspach G; Hengesbach M
    Nucleic Acids Res; 2021 May; 49(8):4629-4642. PubMed ID: 33823543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic interactions within sub-complexes of the H/ACA pseudouridylation guide RNP.
    Youssef OA; Terns RM; Terns MP
    Nucleic Acids Res; 2007; 35(18):6196-206. PubMed ID: 17855403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reconstitution of archaeal H/ACA small ribonucleoprotein complexes active in pseudouridylation.
    Charpentier B; Muller S; Branlant C
    Nucleic Acids Res; 2005; 33(10):3133-44. PubMed ID: 15933208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base-pairing interactions between substrate RNA and H/ACA guide RNA modulate the kinetics of pseudouridylation, but not the affinity of substrate binding by H/ACA small nucleolar ribonucleoproteins.
    Kelly EK; Czekay DP; Kothe U
    RNA; 2019 Oct; 25(10):1393-1404. PubMed ID: 31311819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of a Cbf5-Nop10-Gar1 complex and implications in RNA-guided pseudouridylation and dyskeratosis congenita.
    Rashid R; Liang B; Baker DL; Youssef OA; He Y; Phipps K; Terns RM; Terns MP; Li H
    Mol Cell; 2006 Jan; 21(2):249-60. PubMed ID: 16427014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate placement of substrate RNA by Gar1 in H/ACA RNA-guided pseudouridylation.
    Wang P; Yang L; Gao YQ; Zhao XS
    Nucleic Acids Res; 2015 Sep; 43(15):7207-16. PubMed ID: 26206671
    [TBL] [Abstract][Full Text] [Related]  

  • 9. H/ACA small nucleolar RNA pseudouridylation pockets bind substrate RNA to form three-way junctions that position the target U for modification.
    Wu H; Feigon J
    Proc Natl Acad Sci U S A; 2007 Apr; 104(16):6655-60. PubMed ID: 17412831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The many facets of H/ACA ribonucleoproteins.
    Meier UT
    Chromosoma; 2005 May; 114(1):1-14. PubMed ID: 15770508
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-resolution structure of eukaryotic Fibrillarin interacting with Nop56 amino-terminal domain.
    Höfler S; Lukat P; Blankenfeldt W; Carlomagno T
    RNA; 2021 Apr; 27(4):496-512. PubMed ID: 33483369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA-guided RNA modification: functional organization of the archaeal H/ACA RNP.
    Baker DL; Youssef OA; Chastkofsky MI; Dy DA; Terns RM; Terns MP
    Genes Dev; 2005 May; 19(10):1238-48. PubMed ID: 15870259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Cajal body-specific pseudouridylation guide RNA is composed of two box H/ACA snoRNA-like domains.
    Kiss AM; Jády BE; Darzacq X; Verheggen C; Bertrand E; Kiss T
    Nucleic Acids Res; 2002 Nov; 30(21):4643-9. PubMed ID: 12409454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconstitution and structural analysis of the yeast box H/ACA RNA-guided pseudouridine synthase.
    Li S; Duan J; Li D; Yang B; Dong M; Ye K
    Genes Dev; 2011 Nov; 25(22):2409-21. PubMed ID: 22085967
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and thermodynamic characterization of the reaction pathway of box H/ACA RNA-guided pseudouridine formation.
    Yang X; Duan J; Li S; Wang P; Ma S; Ye K; Zhao XS
    Nucleic Acids Res; 2012 Nov; 40(21):10925-36. PubMed ID: 23012266
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Guide-substrate base-pairing requirement for box H/ACA RNA-guided RNA pseudouridylation.
    De Zoysa MD; Wu G; Katz R; Yu YT
    RNA; 2018 Aug; 24(8):1106-1117. PubMed ID: 29871894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification and Functional Reconstitution of Box H/ACA Ribonucleoprotein Particles.
    Huang C; Wu G; Yu YT
    Methods Mol Biol; 2016; 1421():97-109. PubMed ID: 26965260
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural basis for substrate placement by an archaeal box C/D ribonucleoprotein particle.
    Xue S; Wang R; Yang F; Terns RM; Terns MP; Zhang X; Maxwell ES; Li H
    Mol Cell; 2010 Sep; 39(6):939-49. PubMed ID: 20864039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of H/ACA RNP protein Nhp2p reveals cis/trans isomerization of a conserved proline at the RNA and Nop10 binding interface.
    Koo BK; Park CJ; Fernandez CF; Chim N; Ding Y; Chanfreau G; Feigon J
    J Mol Biol; 2011 Sep; 411(5):927-42. PubMed ID: 21708174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of protein Gar1 to the RNA-guided and RNA-independent rRNA:Ψ-synthase activities of the archaeal Cbf5 protein.
    Fujikane R; Behm-Ansmant I; Tillault AS; Loegler C; Igel-Bourguignon V; Marguet E; Forterre P; Branlant C; Motorin Y; Charpentier B
    Sci Rep; 2018 Sep; 8(1):13815. PubMed ID: 30218085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.