These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 33112150)

  • 1. CHARMM-GUI Free Energy Calculator for Absolute and Relative Ligand Solvation and Binding Free Energy Simulations.
    Kim S; Oshima H; Zhang H; Kern NR; Re S; Lee J; Roux B; Sugita Y; Jiang W; Im W
    J Chem Theory Comput; 2020 Nov; 16(11):7207-7218. PubMed ID: 33112150
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CHARMM-GUI Ligand Binder for absolute binding free energy calculations and its application.
    Jo S; Jiang W; Lee HS; Roux B; Im W
    J Chem Inf Model; 2013 Jan; 53(1):267-77. PubMed ID: 23205773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CHARMM-GUI Free Energy Calculator for Practical Ligand Binding Free Energy Simulations with AMBER.
    Zhang H; Kim S; Giese TJ; Lee TS; Lee J; York DM; Im W
    J Chem Inf Model; 2021 Sep; 61(9):4145-4151. PubMed ID: 34521199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CHARMM-GUI 10 years for biomolecular modeling and simulation.
    Jo S; Cheng X; Lee J; Kim S; Park SJ; Patel DS; Beaven AH; Lee KI; Rui H; Park S; Lee HS; Roux B; MacKerell AD; Klauda JB; Qi Y; Im W
    J Comput Chem; 2017 Jun; 38(15):1114-1124. PubMed ID: 27862047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of octanol-water partition coefficients for the SAMPL6-[Formula: see text] molecules using molecular dynamics simulations with OPLS-AA, AMBER and CHARMM force fields.
    Fan S; Iorga BI; Beckstein O
    J Comput Aided Mol Des; 2020 May; 34(5):543-560. PubMed ID: 31960254
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computations of Absolute Solvation Free Energies of Small Molecules Using Explicit and Implicit Solvent Model.
    Shivakumar D; Deng Y; Roux B
    J Chem Theory Comput; 2009 Apr; 5(4):919-30. PubMed ID: 26609601
    [TBL] [Abstract][Full Text] [Related]  

  • 7. QligFEP: an automated workflow for small molecule free energy calculations in Q.
    Jespers W; Esguerra M; Åqvist J; Gutiérrez-de-Terán H
    J Cheminform; 2019 Apr; 11(1):26. PubMed ID: 30941533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computing Relative Binding Affinity of Ligands to Receptor: An Effective Hybrid Single-Dual-Topology Free-Energy Perturbation Approach in NAMD.
    Jiang W; Chipot C; Roux B
    J Chem Inf Model; 2019 Sep; 59(9):3794-3802. PubMed ID: 31411473
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations.
    Jiang W; Roux B
    J Chem Theory Comput; 2010 Jul; 6(9):2559-2565. PubMed ID: 21857813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CHARMM-GUI ligand reader and modeler for CHARMM force field generation of small molecules.
    Kim S; Lee J; Jo S; Brooks CL; Lee HS; Im W
    J Comput Chem; 2017 Jun; 38(21):1879-1886. PubMed ID: 28497616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absolute Binding Free Energy Calculation and Design of a Subnanomolar Inhibitor of Phosphodiesterase-10.
    Li Z; Huang Y; Wu Y; Chen J; Wu D; Zhan CG; Luo HB
    J Med Chem; 2019 Feb; 62(4):2099-2111. PubMed ID: 30689375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-Ligand Binding Free Energy Calculations with FEP.
    Wang L; Chambers J; Abel R
    Methods Mol Biol; 2019; 2022():201-232. PubMed ID: 31396905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relative energies of binding for antibody-carbohydrate-antigen complexes computed from free-energy simulations.
    Pathiaseril A; Woods RJ
    J Am Chem Soc; 2000 Jan; 122(2):331-8. PubMed ID: 17211491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Alchemical Free Energy Workflows for the Computation of Protein-Ligand Binding Affinities.
    Herz AM; Kellici T; Morao I; Michel J
    Methods Mol Biol; 2024; 2716():241-264. PubMed ID: 37702943
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Absolute binding free energy calculations using molecular dynamics simulations with restraining potentials.
    Wang J; Deng Y; Roux B
    Biophys J; 2006 Oct; 91(8):2798-814. PubMed ID: 16844742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can Free Energy Perturbation Simulations Coupled with Replica-Exchange Molecular Dynamics Study Ligands with Distributed Binding Sites?
    Lockhart C; Luo X; Olson A; Delfing BM; Laracuente XE; Foreman KW; Paige M; Kehn-Hall K; Klimov DK
    J Chem Inf Model; 2023 Aug; 63(15):4791-4802. PubMed ID: 37531558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
    Ge X; Roux B
    J Mol Recognit; 2010; 23(2):128-41. PubMed ID: 20151411
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How to deal with multiple binding poses in alchemical relative protein-ligand binding free energy calculations.
    Kaus JW; Harder E; Lin T; Abel R; McCammon JA; Wang L
    J Chem Theory Comput; 2015 Jun; 11(6):2670-9. PubMed ID: 26085821
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative Binding Free Energy Calculations Applied to Protein Homology Models.
    Cappel D; Hall ML; Lenselink EB; Beuming T; Qi J; Bradner J; Sherman W
    J Chem Inf Model; 2016 Dec; 56(12):2388-2400. PubMed ID: 28024402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimation of relative free energies of binding using pre-computed ensembles based on the single-step free energy perturbation and the site-identification by Ligand competitive saturation approaches.
    Raman EP; Lakkaraju SK; Denny RA; MacKerell AD
    J Comput Chem; 2017 Jun; 38(15):1238-1251. PubMed ID: 27782307
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.