These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 33112348)
1. A structure and activity relationship for single-walled carbon nanotube growth confirmed by Chao HY; Jiang H; Ospina-Acevedo F; Balbuena PB; Kauppinen EI; Cumings J; Sharma R Nanoscale; 2020 Nov; 12(42):21923-21931. PubMed ID: 33112348 [TBL] [Abstract][Full Text] [Related]
2. Atomic-Scale Evidence of Catalyst Evolution for the Structure-Controlled Growth of Single-Walled Carbon Nanotubes. Zhao X; Sun S; Yang F; Li Y Acc Chem Res; 2022 Dec; 55(23):3334-3344. PubMed ID: 36384282 [TBL] [Abstract][Full Text] [Related]
3. In situ study of single-walled carbon nanotube growth in an environmental scanning electron microscope. Mehedi HA; Ravaux J; Tahir S; Podor R; Jourdain V Nanotechnology; 2016 Dec; 27(50):505701. PubMed ID: 27855127 [TBL] [Abstract][Full Text] [Related]
4. Nucleation of Single-Wall Carbon Nanotubes from Faceted Pt Catalyst Particles Revealed by Ma R; Qiu L; Zhang L; Tang DM; Wang Y; Zhang B; Ding F; Liu C; Cheng HM ACS Nano; 2022 Oct; 16(10):16574-16583. PubMed ID: 36228117 [TBL] [Abstract][Full Text] [Related]
5. Growth Termination and Multiple Nucleation of Single-Wall Carbon Nanotubes Evidenced by in Situ Transmission Electron Microscopy. Zhang L; He M; Hansen TW; Kling J; Jiang H; Kauppinen EI; Loiseau A; Wagner JB ACS Nano; 2017 May; 11(5):4483-4493. PubMed ID: 28402623 [TBL] [Abstract][Full Text] [Related]
6. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles. Lin PA; Gomez-Ballesteros JL; Burgos JC; Balbuena PB; Natarajan B; Sharma R J Catal; 2017 May; 349():149-155. PubMed ID: 28740274 [TBL] [Abstract][Full Text] [Related]
7. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Hofmann S; Sharma R; Ducati C; Du G; Mattevi C; Cepek C; Cantoro M; Pisana S; Parvez A; Cervantes-Sodi F; Ferrari AC; Dunin-Borkowski R; Lizzit S; Petaccia L; Goldoni A; Robertson J Nano Lett; 2007 Mar; 7(3):602-8. PubMed ID: 17319731 [TBL] [Abstract][Full Text] [Related]
8. Precise Identification of the Active Phase of Cobalt Catalyst for Carbon Nanotube Growth by Wang Y; Qiu L; Zhang L; Tang DM; Ma R; Wang Y; Zhang B; Ding F; Liu C; Cheng HM ACS Nano; 2020 Dec; 14(12):16823-16831. PubMed ID: 33275403 [TBL] [Abstract][Full Text] [Related]
9. The catalyst for growing single-walled carbon nanotubes by catalytic chemical vapor deposition method. Harutyunyan AR J Nanosci Nanotechnol; 2009 Apr; 9(4):2480-95. PubMed ID: 19437993 [TBL] [Abstract][Full Text] [Related]
10. The effect of defects on the catalytic activity of single Au atom supported carbon nanotubes and reaction mechanism for CO oxidation. Ali S; Fu Liu T; Lian Z; Li B; Sheng Su D Phys Chem Chem Phys; 2017 Aug; 19(33):22344-22354. PubMed ID: 28805223 [TBL] [Abstract][Full Text] [Related]
11. Can single-walled carbon nanotube diameter be defined by catalyst particle diameter? Diaz MC; Jiang H; Kauppinen E; Sharma R; Balbuena PB J Phys Chem C Nanomater Interfaces; 2019; 123(50):. PubMed ID: 33029278 [TBL] [Abstract][Full Text] [Related]
12. Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiO(x) by a vapor-solid-solid mechanism. Liu B; Tang DM; Sun C; Liu C; Ren W; Li F; Yu WJ; Yin LC; Zhang L; Jiang C; Cheng HM J Am Chem Soc; 2011 Jan; 133(2):197-9. PubMed ID: 21155566 [TBL] [Abstract][Full Text] [Related]
13. Formation of Single-Walled Carbon Nanotube-Ruthenium Nanoparticles in Ethanol upon Microwave Radiation. Hemraj-Benny T; Pimentel L; Emeran G Inorg Chem Commun; 2020 Feb; 112():. PubMed ID: 35250369 [TBL] [Abstract][Full Text] [Related]
14. Unveiling the Evolutions of Nanotube Diameter Distribution during the Growth of Single-Walled Carbon Nanotubes. Navas H; Picher M; Andrieux-Ledier A; Fossard F; Michel T; Kozawa A; Maruyama T; Anglaret E; Loiseau A; Jourdain V ACS Nano; 2017 Mar; 11(3):3081-3088. PubMed ID: 28285520 [TBL] [Abstract][Full Text] [Related]
15. Structure of Supported and Unsupported Catalytic Rh Nanoparticles: Effects on Nucleation of Single-Walled Carbon Nanotubes. Gomez-Ballesteros JL; Balbuena PB Langmuir; 2017 Oct; 33(42):11109-11119. PubMed ID: 28709379 [TBL] [Abstract][Full Text] [Related]
16. Investigating the outskirts of Fe and Co catalyst particles in alumina-supported catalytic CVD carbon nanotube growth. Rümmeli MH; Schäffel F; Bachmatiuk A; Adebimpe D; Trotter G; Börrnert F; Scott A; Coric E; Sparing M; Rellinghaus B; McCormick PG; Cuniberti G; Knupfer M; Schultz L; Büchner B ACS Nano; 2010 Feb; 4(2):1146-52. PubMed ID: 20088596 [TBL] [Abstract][Full Text] [Related]
17. Nucleation of graphene and its conversion to single-walled carbon nanotubes. Picher M; Lin PA; Gomez-Ballesteros JL; Balbuena PB; Sharma R Nano Lett; 2014 Nov; 14(11):6104-8. PubMed ID: 25329750 [TBL] [Abstract][Full Text] [Related]
18. Chiral-selective CoSO4/SiO2 catalyst for (9,8) single-walled carbon nanotube growth. Wang H; Wei L; Ren F; Wang Q; Pfefferle LD; Haller GL; Chen Y ACS Nano; 2013 Jan; 7(1):614-26. PubMed ID: 23215361 [TBL] [Abstract][Full Text] [Related]
19. Graphene/single-walled carbon nanotube hybrids: one-step catalytic growth and applications for high-rate Li-S batteries. Zhao MQ; Liu XF; Zhang Q; Tian GL; Huang JQ; Zhu W; Wei F ACS Nano; 2012 Dec; 6(12):10759-69. PubMed ID: 23153374 [TBL] [Abstract][Full Text] [Related]
20. Unzipping of Single-Walled Carbon Nanotube for the Development of Electrocatalytically Active Hybrid Catalyst of Graphitic Carbon and Pd Nanoparticles. Mondal S; Ghosh S; Raj CR ACS Omega; 2018 Jan; 3(1):622-630. PubMed ID: 31457918 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]