These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
181 related articles for article (PubMed ID: 33112597)
21. Tough combinatorial poly(urethane-isocyanurate) polymer networks and hydrogels synthesized by the trimerization of mixtures of NCO-prepolymers. Driest PJ; Dijkstra DJ; Stamatialis D; Grijpma DW Acta Biomater; 2020 Mar; 105():87-96. PubMed ID: 31978622 [TBL] [Abstract][Full Text] [Related]
22. Achieving High-Speed Retraction in Stretchable Hydrogels. Prado RMB; Mishra S; Morgan B; Wijayapala R; Hashemnejad SM; Kundu S ACS Appl Mater Interfaces; 2020 Sep; 12(36):40719-40727. PubMed ID: 32805889 [TBL] [Abstract][Full Text] [Related]
23. Fully physically crosslinked pectin-based hydrogel with high stretchability and toughness for biomedical application. Wu X; Sun H; Qin Z; Che P; Yi X; Yu Q; Zhang H; Sun X; Yao F; Li J Int J Biol Macromol; 2020 Apr; 149():707-716. PubMed ID: 32014477 [TBL] [Abstract][Full Text] [Related]
24. Bacterial cellulose reinforced double-network hydrogels for shape memory strand. Hua J; Liu C; Ng PF; Fei B Carbohydr Polym; 2021 May; 259():117737. PubMed ID: 33673998 [TBL] [Abstract][Full Text] [Related]
25. Self-healing in tough graphene oxide composite hydrogels. Liu J; Song G; He C; Wang H Macromol Rapid Commun; 2013 Jun; 34(12):1002-7. PubMed ID: 23653331 [TBL] [Abstract][Full Text] [Related]
26. Tough and Stretchable Dual Ionically Cross-Linked Hydrogel with High Conductivity and Fast Recovery Property for High-Performance Flexible Sensors. Liang Y; Ye L; Sun X; Lv Q; Liang H ACS Appl Mater Interfaces; 2020 Jan; 12(1):1577-1587. PubMed ID: 31794185 [TBL] [Abstract][Full Text] [Related]
27. Biomimetic Microstructured Antifatigue Fracture Hydrogel Sensor for Human Motion Detection with Enhanced Sensing Sensitivity. Jia L; Wu S; Yuan R; Xiang T; Zhou S ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35642788 [TBL] [Abstract][Full Text] [Related]
28. Noncovalent Muscle-Inspired Hydrogel with Rapid Recovery and Antifatigue Property under Cyclic Stress. Wang Z; Lü S; Liu Y; Li T; Yan J; Bai X; Ni B; Yang J; Liu M ACS Appl Mater Interfaces; 2019 Aug; 11(34):31393-31401. PubMed ID: 31369227 [TBL] [Abstract][Full Text] [Related]
29. Carbon Nanotubes/Hydrophobically Associated Hydrogels as Ultrastretchable, Highly Sensitive, Stable Strain, and Pressure Sensors. Qin Z; Sun X; Yu Q; Zhang H; Wu X; Yao M; Liu W; Yao F; Li J ACS Appl Mater Interfaces; 2020 Jan; 12(4):4944-4953. PubMed ID: 31912722 [TBL] [Abstract][Full Text] [Related]
30. Bone-Adhesive Anisotropic Tough Hydrogel Mimicking Tendon Enthesis. Choi S; Moon JR; Park N; Im J; Kim YE; Kim JH; Kim J Adv Mater; 2023 Jan; 35(3):e2206207. PubMed ID: 36314423 [TBL] [Abstract][Full Text] [Related]
31. Flaw-Insensitive Hydrogels under Static and Cyclic Loads. Bai R; Yang J; Morelle XP; Suo Z Macromol Rapid Commun; 2019 Apr; 40(8):e1800883. PubMed ID: 30740821 [TBL] [Abstract][Full Text] [Related]
32. Controlling the Surface Chemistry of a Hydrogel for Spatially Defined Cell Adhesion. Chen JW; Lim K; Bandini SB; Harris GM; Spechler JA; Arnold CB; Fardel R; Schwarzbauer JE; Schwartz J ACS Appl Mater Interfaces; 2019 May; 11(17):15411-15416. PubMed ID: 30924633 [TBL] [Abstract][Full Text] [Related]
33. An Amphiphilic Entangled Network Design Toward Ultratough Hydrogels. Hou X; Huang B; Zhou L; Liu S; Kong J; He C Adv Mater; 2023 Jul; 35(28):e2301532. PubMed ID: 37197803 [TBL] [Abstract][Full Text] [Related]
34. Low-Temperature Rapid Polymerization of Intrinsic Conducting PAD/OC Hydrogels with a Self-Adhesive and Sensitive Sensor for Outdoor Damage Repair and Detection. Liu Z; Chen Y; Zhang S ACS Appl Mater Interfaces; 2024 Jul; 16(28):36862-36877. PubMed ID: 38970565 [TBL] [Abstract][Full Text] [Related]
35. Strong Wet Adhesion of Tough Transparent Nanocomposite Hydrogels for Fast Tunable Focus Lenses. Li F; Zhang G; Wang Z; Jiang H; Yan S; Zhang L; Li H ACS Appl Mater Interfaces; 2019 Apr; 11(16):15071-15078. PubMed ID: 30938504 [TBL] [Abstract][Full Text] [Related]
36. Tough hydrophobic association hydrogels with self-healing and reforming capabilities achieved by polymeric core-shell nanoparticles. Chen J; An R; Han L; Wang X; Zhang Y; Shi L; Ran R Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():460-467. PubMed ID: 30889720 [TBL] [Abstract][Full Text] [Related]
37. Preparation and characterization of protein-resistant hydrogels for soft contact lens applications via radical copolymerization involving a zwitterionic sulfobetaine comonomer. Zhang W; Li G; Lin Y; Wang L; Wu S J Biomater Sci Polym Ed; 2017 Nov; 28(16):1935-1949. PubMed ID: 28799461 [TBL] [Abstract][Full Text] [Related]
38. Hydrogel with Robust Adhesion in Various Liquid Environments by Electrostatic-Induced Hydrophilic and Hydrophobic Polymer Chains Migration and Rearrangement. Fu C; Shen L; Liu L; Tao P; Zhu L; Zeng Z; Ren T; Wang G Adv Mater; 2023 Apr; 35(15):e2211237. PubMed ID: 36662770 [TBL] [Abstract][Full Text] [Related]
39. Fabrication of a tough, long-lasting adhesive hydrogel patch Lu Y; Li Z; Li Z; Zhou S; Zhang N; Zhang J; Zong L Nanoscale; 2024 Jan; 16(2):645-656. PubMed ID: 38088254 [TBL] [Abstract][Full Text] [Related]
40. Bio-inspired adhesive and self-healing hydrogels as flexible strain sensors for monitoring human activities. Gao Z; Li Y; Shang X; Hu W; Gao G; Duan L Mater Sci Eng C Mater Biol Appl; 2020 Jan; 106():110168. PubMed ID: 31753382 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]