BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 33112726)

  • 1. Anterior-posterior ground reaction forces across a range of running speeds in unilateral transfemoral amputees.
    Sakata H; Hashizume S; Amma R; Hisano G; Murata H; Takemura H; Usui F; Hobara H
    Sports Biomech; 2024 Jan; 23(1):69-80. PubMed ID: 33112726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. External Mechanical Work in Runners With Unilateral Transfemoral Amputation.
    Murata H; Hisano G; Ichimura D; Takemura H; Hobara H
    Front Bioeng Biotechnol; 2021; 9():793651. PubMed ID: 35024365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leg stiffness in unilateral transfemoral amputees across a range of running speeds.
    Hobara H; Sakata H; Hashizume S; Kobayashi Y
    J Biomech; 2019 Feb; 84():67-72. PubMed ID: 30587378
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Loading rates in unilateral transfemoral amputees with running-specific prostheses across a range of speeds.
    Hobara H; Sakata H; Amma R; Hisano G; Hashizume S; Baum BS; Usui F
    Clin Biomech (Bristol, Avon); 2020 May; 75():104999. PubMed ID: 32339944
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of step frequency during running on the magnitude and symmetry of ground reaction forces in individuals with a transfemoral amputation.
    Kobayashi T; Koh MWP; Hu M; Murata H; Hisano G; Ichimura D; Hobara H
    J Neuroeng Rehabil; 2022 Mar; 19(1):33. PubMed ID: 35321725
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Running at submaximal speeds, the role of the intact and prosthetic limbs for trans-tibial amputees.
    Strike SC; Arcone D; Orendurff M
    Gait Posture; 2018 May; 62():327-332. PubMed ID: 29614465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ground Reaction Forces During Sprinting in Unilateral Transfemoral Amputees.
    Makimoto A; Sano Y; Hashizume S; Murai A; Kobayashi Y; Takemura H; Hobara H
    J Appl Biomech; 2017 Dec; 33(6):406-409. PubMed ID: 28605277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mediation of the mediolateral ground reaction force profile to maintain straight running among unilateral transfemoral amputees.
    Tang YW; Murai A; Hobara H
    Sci Rep; 2023 May; 13(1):7823. PubMed ID: 37188732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Limb-specific Strategy across a Range of Running Speeds in Transfemoral Amputees.
    Sakata H; Hashizume S; Takemura H; Hobara H
    Med Sci Sports Exerc; 2020 Apr; 52(4):892-899. PubMed ID: 31688651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biomechanical determinants of top running speeds in para-athletes with unilateral transfemoral amputation.
    Hobara H; Murata H; Hisano G; Hashizume S; Ichimura D; Cutti AG; Petrone N
    Prosthet Orthot Int; 2023 Jun; 47(3):253-257. PubMed ID: 36037278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of step frequency on leg stiffness during running in unilateral transfemoral amputees.
    Hobara H; Sakata H; Namiki Y; Hisano G; Hashizume S; Usui F
    Sci Rep; 2020 Apr; 10(1):5965. PubMed ID: 32249808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amputee Locomotion: Ground Reaction Forces During Submaximal Running With Running-Specific Prostheses.
    Baum BS; Hobara H; Kim YH; Shim JK
    J Appl Biomech; 2016 Jun; 32(3):287-94. PubMed ID: 26957365
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanics of the human walk-to-run gait transition in persons with unilateral transtibial amputation.
    Giest TN; Chang YH
    J Biomech; 2016 Jun; 49(9):1757-1764. PubMed ID: 27087677
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plantar pressures and ground reaction forces during walking of individuals with unilateral transfemoral amputation.
    Castro MP; Soares D; Mendes E; Machado L
    PM R; 2014 Aug; 6(8):698-707.e1. PubMed ID: 24487128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of walking speed on magnitude and symmetry of ground reaction forces in individuals with transfemoral prosthesis.
    Kobayashi T; Hu M; Amma R; Hisano G; Murata H; Ichimura D; Hobara H
    J Biomech; 2022 Jan; 130():110845. PubMed ID: 34749160
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy costs and performance of transfemoral amputees and non-amputees during walking and running: A pilot study.
    Mengelkoch LJ; Kahle JT; Highsmith MJ
    Prosthet Orthot Int; 2017 Oct; 41(5):484-491. PubMed ID: 27885098
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prosthetic gait of unilateral lower-limb amputees with current and novel prostheses: A pilot study.
    De Pauw K; Serrien B; Baeyens JP; Cherelle P; De Bock S; Ghillebert J; Bailey SP; Lefeber D; Roelands B; Vanderborght B; Meeusen R
    Clin Biomech (Bristol, Avon); 2020 Jan; 71():59-67. PubMed ID: 31704536
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absent loading response knee flexion: The impact on gait kinetics and centre of mass motion in individuals with unilateral transfemoral amputation, and the effect of microprocessor controlled knee provision.
    Carse B; Hebenton J; Brady L; Davie-Smith F
    Clin Biomech (Bristol, Avon); 2023 Aug; 108():106061. PubMed ID: 37556922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of prosthetic alignment on the stump temperature and ground reaction forces during gait in transfemoral amputees.
    Cárdenas AM; Uribe J; Font-Llagunes JM; Hernández AM; Plata JA
    Gait Posture; 2022 Jun; 95():76-83. PubMed ID: 35461047
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum-speed curve-running biomechanics of sprinters with and without unilateral leg amputations.
    Taboga P; Kram R; Grabowski AM
    J Exp Biol; 2016 Mar; 219(Pt 6):851-8. PubMed ID: 26985053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.