These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 33112770)

  • 1. HYPOXIA AND REPRODUCTIVE HEALTH: Reproductive challenges at high altitude: fertility, pregnancy and neonatal well-being.
    Moore LG
    Reproduction; 2021 Jan; 161(1):F81-F90. PubMed ID: 33112770
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Maternal AMPK pathway activation with uterine artery blood flow and fetal growth maintenance during hypoxia.
    Moore LG; Lorca RA; Gumina DL; Wesolowski SR; Reisz JA; Cioffi-Ragan D; Houck JA; Banerji S; Euser AG; D'Alessandro A; Hobbins JC; Julian CG
    Am J Physiol Heart Circ Physiol; 2024 Oct; 327(4):H778-H792. PubMed ID: 39028630
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lowland origin women raised at high altitude are not protected against lower uteroplacental O2 delivery during pregnancy or reduced birth weight.
    Julian CG; Hageman JL; Wilson MJ; Vargas E; Moore LG
    Am J Hum Biol; 2011; 23(4):509-16. PubMed ID: 21538651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High altitude differentially modulates potassium channel-evoked vasodilatation in pregnant human myometrial arteries.
    Fallahi S; Houck JA; Euser AG; Julian CG; Moore LG; Lorca RA
    J Physiol; 2022 Dec; 600(24):5353-5364. PubMed ID: 36286320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Greater uterine artery blood flow during pregnancy in multigenerational (Andean) than shorter-term (European) high-altitude residents.
    Wilson MJ; Lopez M; Vargas M; Julian C; Tellez W; Rodriguez A; Bigham A; Armaza JF; Niermeyer S; Shriver M; Vargas E; Moore LG
    Am J Physiol Regul Integr Comp Physiol; 2007 Sep; 293(3):R1313-24. PubMed ID: 17581833
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AMPK activation in pregnant human myometrial arteries from high-altitude and intrauterine growth-restricted pregnancies.
    Lorca RA; Matarazzo CJ; Bales ES; Houck JA; Orlicky DJ; Euser AG; Julian CG; Moore LG
    Am J Physiol Heart Circ Physiol; 2020 Jul; 319(1):H203-H212. PubMed ID: 32502374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uterine artery blood flow, fetal hypoxia and fetal growth.
    Browne VA; Julian CG; Toledo-Jaldin L; Cioffi-Ragan D; Vargas E; Moore LG
    Philos Trans R Soc Lond B Biol Sci; 2015 Mar; 370(1663):20140068. PubMed ID: 25602072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evolutionary model for identifying genetic adaptation to high altitude.
    Moore LG; Shriver M; Bemis L; Vargas E
    Adv Exp Med Biol; 2006; 588():101-18. PubMed ID: 17089883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Measuring high-altitude adaptation.
    Moore LG
    J Appl Physiol (1985); 2017 Nov; 123(5):1371-1385. PubMed ID: 28860167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal PRKAA1 and EDNRA genotypes are associated with birth weight, and PRKAA1 with uterine artery diameter and metabolic homeostasis at high altitude.
    Bigham AW; Julian CG; Wilson MJ; Vargas E; Browne VA; Shriver MD; Moore LG
    Physiol Genomics; 2014 Sep; 46(18):687-97. PubMed ID: 25225183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fetal growth restriction and maternal oxygen transport during high altitude pregnancy.
    Moore LG
    High Alt Med Biol; 2003; 4(2):141-56. PubMed ID: 12855048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative human ventilatory adaptation to high altitude.
    Moore LG
    Respir Physiol; 2000 Jul; 121(2-3):257-76. PubMed ID: 10963780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxygen transport in tibetan women during pregnancy at 3,658 m.
    Moore LG; Zamudio S; Zhuang J; Sun S; Droma T
    Am J Phys Anthropol; 2001 Jan; 114(1):42-53. PubMed ID: 11150051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tibetan protection from intrauterine growth restriction (IUGR) and reproductive loss at high altitude.
    Moore LG; Young D; McCullough RE; Droma T; Zamudio S
    Am J Hum Biol; 2001; 13(5):635-44. PubMed ID: 11505472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMP-activated protein kinase activator AICAR attenuates hypoxia-induced murine fetal growth restriction in part by improving uterine artery blood flow.
    Lane SL; Houck JA; Doyle AS; Bales ES; Lorca RA; Julian CG; Moore LG
    J Physiol; 2020 Sep; 598(18):4093-4105. PubMed ID: 32592403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neonatal oxygenation, pulmonary hypertension, and evolutionary adaptation to high altitude (2013 Grover Conference series).
    Niermeyer S; Andrade-M MP; Vargas E; Moore LG
    Pulm Circ; 2015 Mar; 5(1):48-62. PubMed ID: 25992270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human adaptation to high altitude: regional and life-cycle perspectives.
    Moore LG; Niermeyer S; Zamudio S
    Am J Phys Anthropol; 1998; Suppl 27():25-64. PubMed ID: 9881522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Maternal O
    Moore LG
    Am J Hum Biol; 1990; 2(6):627-637. PubMed ID: 28520138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Maternal adaptation to high-altitude pregnancy: an experiment of nature--a review.
    Moore LG; Shriver M; Bemis L; Hickler B; Wilson M; Brutsaert T; Parra E; Vargas E
    Placenta; 2004 Apr; 25 Suppl A():S60-71. PubMed ID: 15033310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human physiological adaptation to pregnancy: inter- and intraspecific perspectives.
    Rockwell LC; Vargas E; Moore LG
    Am J Hum Biol; 2003; 15(3):330-41. PubMed ID: 12704709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.